BIBLIOGRAPHY 25
[23] L.J. Durlofsky, “Numerical calculation of equivalent grid block permeability tensors
for heterogeneous poros-media,” Water. Resour. Res., vol. 27, pp. 699–708, 1991.
[24] W. E and B. Engquist, “The h eterogeneous multi-scale methods,” Comm. Math.
Sci., vol. 1, pp. 87–133, 2003.
[25] W. E and B. Engquist, “Multiscale modeling and computation,” Notices of the
American Math. Soc., vol. 50, no. 9, pp. 1062–1070, 2003.
[26] B. Engquist, “Computation of oscillatory solutions t o partial differential equations,”
Lecture Notes in Math., Springer-Verlag, vol. 1270, pp. 10–22, 1987.
[27] C. Garcia-Cervera, W. Ren, J. Lu and W. E, “Sequential multiscale modeling using
sparse representation,” Comm. Comput. Phys., vol. 4, pp. 1025–1033, 2008.
[28] A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan and M. S trauss, “Near-optimal
sparse Fourier representations via sampling,” Proc. of the 2002 ACM Symposium on
Theory of Computing STOC, pp. 389–398, 2002.
[29] L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput.
Phys., vol. 73, pp. 325–348, 1987.
[30] E. O. Hall, “The deformation and ageing of mild steel: III discussion of results,”
Proc. Phys. Soc., vol. 64, pp. 747–753, 1951.
[31] B.L. Holian and R. Ravelo, “Fracture simulation using large-scale molecular dynam-
ics,” Phys. Rev. B., vol. 51, pp. 11275–11288, 1995.
[32] J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics,
Springer-Verlag, New York, Berlin, 1981.
[33] X. Li and W. E “Variational boundary conditions for molecular dynamics simulation
of crystalline solids at finite temperature: Treatment of the thermal bath,” Phys.
Rev. B, vol. 76, no. 10, pp. 104107–104129, 2007.
[34] A. Messiah, Quantum Mechanics, Dover Publications, 1999.
[35] H. Mori, “Transport, collective motion, and Brownian motion,” Prog. Theor. Phys.,
vol. 33, pp. 423–455, 1965.