9 Designing the Carbon Nanotube Field Effect Transistor 245
36. Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris Ph (2001) Am-
bipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett
87:256805–256808
37. Martel R, Schmidt T, Shea HR, Hertel T, Avouris Ph (1998) Single- and multi-wall carbon
nanotube field-effect transistors. Appl Phys Lett 73:2447–2449
38. Michaelson HB (1977) The work function of the elements and its periodicity. J Appl Phys
48:4729–4733
39. Moon S, Lee S-G, Song W, Lee JS, Nam K, Kim J, Park N (2007) Appl Phys Lett:90:092113
40. Nosho Y, Ohno Y, Kishimoto S, Mizutani T (2005) n-Type carbon nanotube field-effect tran-
sistors fabricated by using Ca contact electrodes. Appl Phys Lett 86:073105–073107
41a. Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structure and electronic properties
of single-walled carbon nanotubes. Nature 391:62–64
41b. Wong SS, Joselevich E, Woolley AT, Cheung CL, Lieber CM (1998) Covalently functional-
ized nanotubes as nanometre-sized probes in chemistry and biology. Nature 394:52–55
42. Oh H, Kim JJ, Song W, Moon S, Kim N, Kim J, Park N (2006) Fabrication of n-type carbon
nanotube field-effect transistors by Al doping. Appl Phys Lett 88:103503–103505
43. Park N, Hong S (2005) Electronic structure calculations of metal–nanotube contacts with or
without oxygen adsorption. Phys Rev B 72:045408–045412
44. Park N, Kang D, Hong S, Han S (2005) Pressure-dependent Schottky barrier at the metal–
nanotube contact. Appl Phys Lett 87:013112–013114
45. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple.
Phys Rev Lett 77:3865–3868
46. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon
nanotube-based nonvolatile random access memory for molecular computing. Science
289:94–97
47. Saito R, Dresselhaus G, Dresselhaus MS (1993) Electronic structure of double-layer
graphene tubules. J Appl Phys 73:494–500
48. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene
tubules based on C
60
. Phys Rev B 46:1804–1811
49. Sasaki T, Ohno T (1999) Calculations of the potential-energy surface for dissociation process
of O
2
on the Al(111) surface. Phys Rev B 60:7824–7827
50. Star A, Han T-R, Joshi V, Gabriel J-C P, Gr
¨
uner G (2004) Nanoelectronic carbon dioxide
sensors. Adv Mater 16:2049–2052
51. Star A, Han T-R, Joshi V, Stetter JR (2004) Electroanalysis 16:108–112
52. Sumanasekera GU, Adu CKW, Fang S, Eklund PC (2000) Effects of gas adsorption and
collisions on electrical transport in single-walled carbon nanotubes. Phys Rev Lett 85:1096–
1099
53. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, Dekker C (1997) Individual
single-wall carbon nanotubes as quantum wires. Nature 386:474–477
54a. Tans SJ, Devoret MH, Groeneveld RJA, Dekker C (1998) Electron-electron correlations in
carbon nanotubes. Nature 394:761–764
54b. Wilder JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of
atomically resolved carbon nanotubes. Nature 391:59–62
55. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single
carbon nanotube. Nature 393:49–52
56. Tersoff J (1999) Contact resistance of carbon nanotubes. Appl Phys Lett 74:2122–2124
57. Ulman A (1991) An introduction to ultrathin organic films; from Langmuir-Blodgett to self
assembly. Academic Press, San Diego, CA
58. van Oss CJ, Giese RF, Bronson PM, Docoslis A, Edwards P, Ruyechan WT (2003)
Macroscopic-scale surface properties of streptavidin and their influence on a specific inter-
actions between streptavidin and dissolved biopolymers. Colloids Surf B 30:25–36
59. Xue Y, Datta S (1999) Fermi-level alignment at metal–carbon nanotube interfaces: Applica-
tion to scanning tunneling spectroscopy. Phys Rev Lett 83:4844–4847
60. Yao Z, Kane CL, Dekker C (2000) High-field electrical transport in single-wall carbon nan-
otubes. Phys Rev Lett 84:2941–2944