Ribosomes and Polypeptide Synthesis
Aitken, C.E., Petrov,A., and Puglisi, J.D., Single ribosome dynam-
ics and the mechanism of translation, Annu. Rev. Biophys. 39,
491–513 (2010).
Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz,T., The com-
plete atomic structure of the large ribosomal subunit at 2.4 Å
resolution, Science 289, 905–920 (2000).
Bashan, A. and Yonath, A., Correlating ribosome function with
high-resolution structures,Trends Microbiol. 16, 326–335 (2008).
Bell, C.E. and Eisenberg, D.E., Crystal structure of diphtheria
toxin bound to nicotinamide adenine dinucleotide, Biochem-
istry 35, 1137–1149 (1996).
Brandt, F., Etchells, S.A., Ortiz, J.O., Elcock,A.H., Hartl, F.U., and
Baumeister, W., The native 3D organization of bacterial
polysomes, Cell 136, 261–271 (2009).
Brodersen, D.E., Clemons, W.M., Jr., Carter, A.P., Morgan-
Warren, R.J., Wimberly, B.T., and Ramakrishnan, V.,The struc-
tural basis for the action of the antibiotics tetracycline,
pactamycin, and hygromycin B on the 30S ribosomal subunit,
Cell 103, 1143–1154 (2000).
Czworkowski, J.,Wang, J., Steitz, J.A., and Moore, P.B., The crystal
structures of elongation factor G complexed with GDP, at 2.7
Å resolution; and Ævarsson, A., Brazhnikov, E., Garber, M.,
Zheltonosova, J., Chirgadze, Yu., Al-Karadaghi, S., Svensson,
L.A., and Liljas,A.,Three-dimensional structure of the riboso-
mal translocase: elongation factor G from Thermus ther-
mophilus, EMBO J. 13, 3661–3668 and 3669–3677 (1994).
Dintzis, H.M., Assembly of the peptide chains of hemoglobin,
Proc. Natl. Acad Sci. 47, 247–261 (1961); and The wandering
pathway to determining N to C synthesis of proteins: Some
recollections concerning protein structure and biosynthesis,
Biochem. Mol. Biol. Educ. 34, 241–246 (2006).[The determina-
tion of the direction of polypeptide biosynthesis.]
Dunkle, J.A. and Cate, J.H.D., Ribosome structure and dynamics
during translocation and termination, Annu. Rev. Biophys. 39,
227–244 (2010).
Frank, J., Single-particle imaging of macromolecules by cryo-
electron microscopy, Annu. Rev. Biophys. Biomol. Struct. 31,
303–319 (2002).
Frank, J. and Agrawal, R.K., A ratchet-like inter-subunit reorgan-
ization of the ribosome during translocation, Nature 406,
318–322 (2000).
Frank, J. and Gonzalez, R.L., Jr., Structure and dynamics of a pro-
cessive Brownian motor: the translating ribosome, Annu. Rev.
Biochem. 79, 381–412 (2010).
Gao, H., et al., RF3 induces ribosomal conformational changes
responsible for dissociation of class I release factors, Cell 129,
929–941 (2007).
Gingras, A.-C., Raught, B., and Sonnberg, N., eIF4 initiation fac-
tors: effectors of mRNA recruitment to ribosomes and regula-
tors of translation, Annu. Rev. Biochem. 68, 913–963 (1999).
Held, W.A., Ballou, B., Mizushima, S., and Nomura, M., Assembly
mapping of 30S ribosomal proteins from Escherichia coli, J.
Biol. Chem. 249, 3103–3111 (1974).
Holbrook, S.R., Structural principles from large RNAs, Annu.
Rev. Biophys. 37, 445–464 (2008).
Jackson, R.J., Hellen, C.U.T., and Pestova, T.V., The mechanism of
eukaryotic translation and principles of its regulation, Nature
Rev. Mol. Cell Biol. 10, 113–127 (2010).
Kawashima, T., Berthet-Colominas, C., Wulff, M., Cusack, S., and
Leberman, R.,The structure of the Escherichia coli EF-Tu EF-
Ts complex at 2.5 Å resolution, Nature 379, 511–518 (1996).
Kiel, M.C., Kaji, H., and Kaji, A., Ribosome recycling, Biochem.
Mol. Biol. Educ. 35, 40-44 (2007); and Hirokawa, G., Demesh-
kina, N., Iwakura, N., Kaji, H., and Kaji, A., The ribosome-
recycling step: consensus or controversy? Trends Biochem. Sci.
31, 143–149 (2006).
Kjeldgaard, M. and Nyborg, J., Refined structure of elongation fac-
tor EF-Tu from Escherichia coli, J. Mol. Biol. 223, 721–742
(1992); and Kjeldgaard, M., Nissen, P.,Thirup, S., and Nyborg, J.,
The crystal structure of elongation factor EF-Tu from Thermus
aquaticus in the GTP conformation, Structure 1, 35–50 (1993).
Korostelev, A. and Noller, H.F., The ribosome in focus: new struc-
tures bring new insights, Trends Biochem. Sci. 32, 434–441
(2007); and Korostelev, A., Trakhanov, S., Laurberg, M., and
Noller, H.F., Crystal structure of the 70S ribosome–tRNA
complex reveals functional interactions and rearrangements,
Cell 126, 1065–1077 (2006).
Laurberg, M., Asahara, H., Korostelev, A., Zhu, J., Trakhanov, S.,
and Noller,H.F.,Structural basis for translation termination on
the 70S ribosome, Nature 454, 852–857 (2008); Korostelev, A.,
Asahara, H., Lancaster, L., Laurberg, M., Hirschi, A., Zhu, J.,
Trakhanov, S., Scott,W.G., and Noller, H.F., Crystal structure of
a translation termination complex formed with release factor
RF2, Proc. Natl.Acad. Sci. 105, 19684–19689 (2008); andWeixl-
baumer, A., Jin, H., Neubauer, C., Voorhees, R.M., Petry, S.,
Kelley, A.C., and Ramakrishnan, V., Insights into translational
termination from the structure of RF2 bound to the ribosome,
Science 322, 953–956 (2008).
Marcotrigiano, J., Gingras, A.-C., Sonenberg, N., and Burley, S.K.,
Cocrystal structure of the messenger RNA 5¿ cap-binding pro-
tein (eIF4E) bound to 7-methyl-GDP, Cell 89, 951–961 (1997).
Moazed, D. and Noller, H.F., Intermediate states in the movement
of transfer RNA in the ribosome, Nature 342, 142–148 (1989).
Moore, P.B. and Steitz,T.A.,The involvement of RNA in ribosome
function, Nature 418, 229–235 (2002); and The structural basis
of large ribosomal subunit function, Annu. Rev. Biochem. 72,
813–850 (2003).
Munro, J.B., Sanbonmatsu, K.Y., Spahn, C.M.T., and Blanchard,
S.C., Navigating the ribosome’s metastable energy landscape,
Trends Biochem. Sci. 31, 390–399 (2009).
Nissen, P., Kjeldgaard, M.,Thirup, S., Polekhina, G., Reshetnikova,
L., Clark, B.F.C., and Nyborg, J., Crystal structure of the ter-
nary complex of Phe–tRNA
Phe
, EF-Tu, and a GTP analog, Sci-
ence 270, 1464–1472 (1995).
Noller, H.F., Hoffarth, V., and Zimniak, L., Unusual resistance
of peptidyl transferase to protein extraction procedures, Sci-
ence 256, 1416–1419 (1992); and Noller, H.F., Peptidyl trans-
ferase: protein, ribonucleoprotein, or RNA? J. Bacteriol. 175,
5297–5300 (1993).
Ogle, J.M., Brodersen, D.E., Clemons,W.M., Jr.,Tarry, M.J., Carter,
A.P., and Ramakrishnan, V., Recognition of cognate transfer
RNA by the 30S ribosomal subunit, Science 292, 897–902
(2001); and Ogle, J.M., Carter, A.P., and Ramakrishnan, V., In-
sights into the decoding mechanism from recent ribosome
structures, Trends Biochem. Sci. 28, 259–266 (2003).
Pioletti, M., et al., Crystal structure of complexes of the small ribo-
somal subunit with tetracycline, edeine and IF3, EMBO J. 20,
1829–1839 (2001).
Rodnina, M.V., Beringer, M., and Wintermeyer, W., How the ri-
bosome makes peptide bonds, Trends Biochem. Sci. 32,
20–26 (2007).
Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M.,
Janell, D., Bashan,A., Bartels, H.,Agmon, I., Franceschi, F., and
Yonath,A., Structure of functionally activated small ribosomal
subunit at 3.3 Å resolution, Cell 102, 615–623 (2000).
Schmeing, T.M., and Ramakrishnan, V., What recent ribosome
structures have revealed about the mechanism of translation,
References 1425
JWCL281_c32_1338-1428.qxd 8/19/10 10:06 PM Page 1425