308 14. Nonlinear Elliptic Equations
[HW] S. Hildebrandt and K. Widman, Some regularity results for quasilinear systems
of second order, Math. Zeit. 142(1975), 67–80.
[HM1] D. Hoffman and W. Meeks, A complete embedded minimal surface in R
3
with
genus one and three ends, J. Diff. Geom. 21(1985), 109–127.
[HM2] D. Hoffman and W. Meeks, Properties of properly imbedded minimal surfaces
of finite topology, Bull. AMS 17(1987), 296–300.
[HRS] D. Hoffman, H. Rosenberg, and J. Spruck, Boundary value problems for sur-
faces of constant Gauss curvature, CPAM 45(1992), 1051–1062.
[IL] H. Ishii and P. Lions, Viscosity solutions of fully nonlinear second-order elliptic
partial differential equations, J. Diff. Equ. 83(1990), 26–78.
[JS] H. Jenkins and J. Serrin, The Dirichlet problem for the minimal surface equation
in higher dimensions, J. Reine Angew. Math. 229(1968), 170–187.
[Jo] F. John, Partial Differential Equations, Springer, New York, 1975.
[Jos] J. Jost, Conformal mappings and the Plateau-Douglas problem in Riemannian
manifolds, J. Reine Angew. Math. 359(1985), 37–54.
[Kaz] J. Kazdan, Prescribing the Curvature of a Riemannian Manifold, CBMS Reg.
Conf. Ser. Math. #57, AMS, Providence, R. I., 1985.
[KaW] J. Kazdan and F. Warner, Curvature functions for compact 2-manifolds, Ann.
Math. 99(1974), 14–47.
[KS] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities
and Their Applications, Academic, New York, 1980.
[Kry1] N. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations, Math.
USSR Izv. 20(1983), 459–492.
[Kry2] N. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations in a
domain, Math. USSR Izv. 22(1984), 67–97.
[Kry3] N. Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order,
D. Reidel, Boston, 1987.
[KrS] N. Krylov and M. Safonov, An estimate of the probability that a diffusion pro-
cess hits a set of positive measure, Sov. Math. Dokl. 20(1979), 253–255.
[LU] O. Ladyzhenskaya and N. Ural’tseva, Linear and Quasilinear Elliptic Equa-
tions, Academic, New York, 1968.
[Law] H. B. Lawson, Lectures on Minimal Submanifolds, Publish or Perish, Berkeley,
Calif., 1980.
[Law2] H. B. Lawson, Minimal Varieties in Real and Complex Geometry, University of
Montreal Press, 1974.
[LO] H. B. Lawson and R. Osserman, Non-existence, non-uniqueness, and irregular-
ity of solutions to the minimal surface equation, Acta Math. 139(1977), 1–17.
[LS] J. Leray and J. Schauder, Topologie et ´equations fonctionelles, Ann. Sci. Ecole
Norm. Sup. 51(1934), 45–78.
[LM]
J. Lions and E. Magenes, N
on-homogeneous Boundary Problems and Applica-
tions I, II, Springer, New York, 1972.
[LiP1] P. Lions, R´esolution de probl`emes ´elliptiques quasilin´eaires, Arch. Rat. Mech.
Anal. 74(1980), 335–353.
[LiP2] P. Lions, Sur les ´equations de Monge–Ampere, I, Manuscripta Math. 41(1983),
1–43; II, Arch. Rat. Mech. Anal. 89(1985), 93–122.
[MM] U. Massari and M. Miranda, Minimal Surfaces of Codimension One,North-
Holland, Amsterdam, 1984.
[MT] R. Mazzeo and M. Taylor, Curvature and uniformization, Isr. J. Math. 130
(2002), 323–346.