k, md h, ft kh Skh Skh/5646.5 Sh Sh/56
435 2 870 870 0.154 2 0.036
254 2 508 1378 0.244 4 0.071
196 2 392 1770 0.313 6 0.107
172 3 516 2286 0.405 9 0.161
166 2 332 2618 0.464 11 0.196
158 2 316 2934 0.520 13 0.232
153 2 306 3240 0.574 15 0.268
147 2 294 3534 0.626 17 0.304
128 1 128 3662 0.649 18 0.321
105 2 210 3872 0.686 20 0.357
100 1 100 3972 0.703 21 0.375
91 2.5 227.5 4199.5 0.744 23.5 0.420
90 2.5 225 4424.5 0.784 26 0.464
83 2 166 4590.5 0.813 28 0.50
72 1.5 108 4698.5 0.832 29.5 0.527
62 2 124 4822.5 0.854 31.5 0.563
49 6.5 294 5116.5 0.906 38.0 0.679
44 2 88 5204.5 0.922 40.0 0.714
40 2 80 5284.5 0.936 42 0.750
35 2 70 5354.4 0.948 44 0.786
32 2 64 5418.5 0.960 46 0.821
30 2 60 5478.5 0.970 48 0.857
28 2 56 5534.5 0.980 50 0.893
27 2 54 5588.5 0.990 52 0.929
20 2 40 5628.5 0.997 54 0.964
9 2 18 5646.5 1.000 56 1.000
Step 2. Plot the normalized capacities on a Cartesian scale as shown in
Figure 4-33.
Step 3. Calculate the Lorenz coefficient by dividing the area above the
straight line (area A) by the area under the straight line (area B)
to give:
L = 0.42
A plot of the cumulative permeability capacity Skh versus Sh (without
normalization) is commonly constructed, as shown in Figure 4-34, and
used to assign average permeability values for a selected number of
reservoir layers. If the intervals of the thickness are chosen, as shown in
Figure 4-34, then the average values of permeability for each thickness
interval (layer) can be calculated by dividing the incremental (kh) by the
incremental thickness.
Fundamentals of Rock Properties 265
Reservoir Eng Hndbk Ch 04b 2001-10-24 09:46 Page 265