473 The Binomial Option-Pricing Model
However, if the employee exits the fi rm and the vesting period has
passed, he will try to see if he can exercise the option, giving the expected
payoff
Exitrate/ max[ , , 0]nSijX∗−()
Finally, before vesting, the ESO is simply worth the expected payoff,
discounted (by the risk-neutral probabilities), of the next-period
values:
()
() )
1
11 1
−∗
+++ +
Exitrate/
opt , opt( ,
Up Down
n
ij tj
R
ππ
The fi nal step in the code is to defi ne the value of the function ESO:
ESO = opt(0, 0).
17.8.4 Some Sensitivity Analysis
We can use data tables to perform sensitivity analysis on our ESO
function.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
AB DCEF
S
X 50 Option exercise price
T 10.0000 Time to option exercise (in years)
Vesting period (years) 3.00
Interest 5.00% Annual interest rate
Sigma 35% Riskiness of stock
Stock dividend rate 2.50% Annual dividend rate on stock
Exit rate, e 10.00%
Option exercise multiple, m 3.00
n 25 Number of subdivisions of one year
Employee stock option value 13.5275 <-- =ESO(B2,B3,B4,B5,B6,B7,B8,B9,B10,B11)
Black-Scholes call 19.1842 <-- =BSCall(B2*EXP(-B8*B4),B3,B4,B6,B7)
Sensitivity of ESO value to number of subdivisions n
n 13.5275 <-- =B13, data table header
2 12.8213
5 13.2870
10 13.4312
25 13.5275
50 13.5646
75 13.5733
100 13.5753
200 13.5810
ESO FUNCTION SENSITIVITY TO NUMBER OF SUBDIVISIONS n OF ONE YEAR
50 Current stock price
12.80
12.90
13.00
13.10
13.20
13.30
13.40
13.50
13.60
0 25 50 75 100 125 150 175 200
Subdivisions, n
ESO