Literaturverzeichnis 273
43. FAHRMEIR, L.; KNEIB, T.; LANG, S. Regression. Springer Verlag, Berlin Heidelberg,
2009. 53, 54, 57, 61, 182
44. FANG, K. The uniform design: application of number-theoretic methods in experimental
design. Acta Math. Appl. Sinica 3 (1980), 363–372. 164
45. FANG, K. Theory, method and applications of the uniform design. Inter. J. Reliability,
Quality and Safety Engineering 9 (2002), 305–315. 164
46. FANG, K.; LI, J. Sone new results on uniform design. Chinese Science Bulletin 40 (1994),
268–272. 179
47. FANG, K.; LIN, D. Uniform designs and their application in industry. In Handbook on
Statistics in Industry. Elsevier, North-Holland, Amsterdam, 2003, pp. 131–170. 164
48. FANG, K.; LIN, D.; WINKER, P.; ZHANG, Y. Uniform design: Theory and applications.
Technometrics 42 (2000), 237–248. 164
49. FANG, K.-T.; LI, R. Bayesian statistical inference on elliptical matrix distributions. J.
Multivar. Anal. 70, 1 (1999), 66–85. 181
50. FANG, K.-T.; LI, R.; SUDJIA NTO, A. Design and Modeling for Computer Experiments
(Computer Science & Da ta Analysis). Chapman & Hall/CRC, 2005.
162, 163, 164, 165,
166, 178, 179, 181, 182, 183, 187, 194, 222, 249, 250, 251
51. FANG, K.-T.; LU, X.; WINKER, P. Lower bounds for centered and wrap-around l2-
discrepancies and construction of uniform designs by threshold accepting. J. Complex. 19, 5
(2003), 692–711. 182
52. FANG, K.-T.; MA, C.-X.; WINKER , P. Centered l2-discrepancy of random sampling and
latin hypercube design, and construction of uniform designs. MATHEMATICS OF COMPU-
TATION 71, 237 (2000), 275–296. 178
53. FANG, K.-T.; TANG, Y.; YIN, J. Lower bounds for wrap-around l2-discrepancy and con-
structions of symmetrical uniform designs. J. Complex. 21, 5 (2005), 757–771. 167
54. FISH ER, R. A. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh,
1925. 85
55. FISH ER, R. A. The arrangement of field experiments. Journal of the Ministry of Agriculture
of Great Britain 33 (1926), 503–513. 84
56. FISH ER, R. A. The Design of Experiments. Oliver and Boyd, Edinburgh and London, 1935.
1, 85, 98
57. FONS EC A, C.; FLEMING, P. Muliobjective optimization and multible constraint handling
with evolutionary algorithms part i: A unified formulation. In IEEE Transactions on Systems,
Man and Cybernetics (1998), vol. 28, pp. 26–37. 236
58. FONS EC A, C.; FLEMMIN G, P. Genetic algorithm for multiobjective optimization: Formula-
tion, discussion and generalization. In Proceedings of the 5th International Conference on
Genetic Algorithms (1993), pp. 416–423. 236
59. FOWLKES, W.; CREVELING, C. Engineering Methods for Robust Product Design. Addison-
Wesley, Reading, MA, 1995. 2, 32, 56, 131
60. FRAN K, I. E.; FRIEDMAN, J. H. A statistical view of some chemometrics regression tools.
Technometrics 35 (1993), 109–148.
222
61. FURN IVAL, G.; WILSON, R. Regression by leaps and bounds. Technometrics 16 (1974),
499–511. 221
62. GALA NT I, S.; JUNG, A. R. Low-discrepancy sequences: Monte carlo simulation of option
prices. Journal of Derivatives (1997), 63–68. 172
63. GAUCH, H.-H. Scientific Method in Practice. Cambridge University Press, Cambridge New
York, 2003. 2, 24
64. GROVE, D.; DAVIS, T. Engineering, Quality and Experimental Design. Longman Scientific
and Technical, Harlow, 1992. 12
65. HASTIE, T.; LOADER, C. Local regression: automatic kernel carpentry (with discussion).
Statistical Science 8 (1993), 120–143. 206
66. HELLST RAND, C. The necessity of modern quality improvement and some experience with
its implementation in the manufacture of rolling bearings. Tech. rep., Center for Quality and
Productivity Improvement, University of Wisconsin - Madison, 1989. 82