§1. çÌÁ×ÎÙÅ ÕÎÉ×ÅÒÓÁÌØÎÙÅ ÆÕÎËÃÉÉ 159
ÏÂÁ ÚÎÁÞÅÎÉÑ ÎÅ ÏÐÒÅÄÅÌÅÎÙ, ÌÉÂÏ ÏÐÒÅÄÅÌÅÎÙ É ÒÁ×ÎÙ).
äÒÕÇÉÍÉ ÓÌÏ×ÁÍÉ, V
m
= U
s(m)
, ÔÏ ÅÓÔØ ÆÕÎËÃÉÑ s ÄÁ¾Ô ÐÏ V -ÎÏÍÅÒÕ ÎÅËÏ-
ÔÏÒÏÊ ÆÕÎËÃÉÉ ÎÅËÏÔÏÒÙÊ U-ÎÏÍÅÒ ÔÏÊ ÖÅ ÆÕÎËÃÉÉ.
ôÅÏÒÅÍÁ 58. óÕÝÅÓÔ×ÕÅÔ ÇÌÁ×ÎÁÑ ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎËÃÉÑ.
äÏËÁÚÁÔÅÌØÓÔ×Ï. (ðÅÒ×ÙÊ ÓÐÏÓÏÂ.) ðÏËÁÖÅÍ, ÞÔÏ ÏÐÉÓÁÎÎÏÅ × ÄÏËÁÚÁÔÅÌØ-
ÓÔ×Å ÔÅÏÒÅÍÙ 52 (Ó. 153) ÐÏÓÔÒÏÅÎÉÅ ÕÎÉ×ÅÒÓÁÌØÎÏÊ ÆÕÎËÃÉÉ ÄÁ¾Ô ÇÌÁ×ÎÕÀ
ÕÎÉ×ÅÒÓÁÌØÎÕÀ ÆÕÎËÃÉÀ. îÁÐÏÍÎÉÍ, ÞÔÏ ÍÙ ÐÅÒÅÞÉÓÌÑÌÉ ×ÓÅ ÐÒÏÇÒÁÍÍÙ
p
0
, p
1
, p
2
, . . . ËÁËÏÇÏ-ÔÏ ÅÓÔÅÓÔ×ÅÎÎÏÇÏ ÑÚÙËÁ ÐÒÏÇÒÁÍÍÉÒÏ×ÁÎÉÑ × ÐÏÒÑÄËÅ
×ÏÚÒÁÓÔÁÎÉÑ ÉÈ ÄÌÉÎ É ÐÏÌÁÇÁÌÉ U(n, x) ÒÁ×ÎÙÍ ÒÅÚÕÌØÔÁÔÕ ÐÒÉÍÅÎÅÎÉÑ
ÐÒÏÇÒÁÍÍÙ p
n
Ë ×ÈÏÄÕ x. ðÕÓÔØ ÔÅÐÅÒØ ÅÓÔØ ËÁËÁÑ-ÔÏ ÄÒÕÇÁÑ ×ÙÞÉÓÌÉÍÁÑ
ÆÕÎËÃÉÑ V Ä×ÕÈ ÁÒÇÕÍÅÎÔÏ×. îÁÍ ÎÁÄÏ ÐÏ ÌÀÂÏÍÕ ÎÁÔÕÒÁÌØÎÏÍÕ m ÐÏÌÕ-
ÞÉÔØ ÐÒÏÇÒÁÍÍÕ ÆÕÎËÃÉÉ V
m
, ÔÏ ÅÓÔØ ÆÕÎËÃÉÉ, ËÏÔÏÒÁÑ ÐÏÌÕÞÉÔÓÑ, ÅÓÌÉ
× V ÚÁÆÉËÓÉÒÏ×ÁÔØ ÐÅÒ×ÙÊ ÁÒÇÕÍÅÎÔ ÒÁ×ÎÙÍ m. ñÓÎÏ, ÞÔÏ ÔÁËÕÀ ÐÒÏÇ-
ÒÁÍÍÕ (× ÂÏÌØÛÉÎÓÔ×Å ÑÚÙËÏ× ÐÒÏÇÒÁÍÍÉÒÏ×ÁÎÉÑ) ÐÏÌÕÞÉÔØ ÌÅÇËÏ ¡ ÎÁÄÏ
ÔÏÌØËÏ × ÐÒÏÇÒÁÍÍÅ ÄÌÑ V ÚÁÍÅÎÉÔØ ÐÅÒ×ÙÊ ÁÒÇÕÍÅÎÔ ÎÁ ÏÐÒÅÄÅÌÅÎÉÅ ËÏÎ-
ÓÔÁÎÔÙ (ÉÌÉ ÉÓÐÏÌØÚÏ×ÁÔØ ÐÒÏÇÒÁÍÍÕ ÄÌÑ V × ËÁÞÅÓÔ×Å ÐÏÄÐÒÏÇÒÁÍÍÙ, Á ×
ÏÓÎÏ×ÎÏÊ ÐÒÏÇÒÁÍÍÅ ×ÙÚÙ×ÁÔØ V Ó ÆÉËÓÉÒÏ×ÁÎÎÙÍ ÐÅÒ×ÙÍ ÁÒÇÕÍÅÎÔÏÍ).
(÷ÔÏÒÏÊ ÓÐÏÓÏÂ.) îÏ ÍÏÖÎÏ É ÎÅ ×ÄÁ×ÁÔØÓÑ × ÄÅÔÁÌÉ ÐÏÓÔÒÏÅÎÉÑ ÕÎÉ×ÅÒ-
ÓÁÌØÎÏÊ ÆÕÎËÃÉÉ, Á ×ÏÓÐÏÌØÚÏ×ÁÔØÓÑ ÌÉÛØ ÆÁËÔÏÍ Å¾ ÓÕÝÅÓÔ×Ï×ÁÎÉÑ.
úÁÍÅÔÉÍ ÓÎÁÞÁÌÁ, ÞÔÏ ÓÕÝÅÓÔ×ÕÅÔ ×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ ÔÒ¾È ÁÒÇÕÍÅÎ-
ÔÏ×, ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÄÌÑ ËÌÁÓÓÁ ×ÙÞÉÓÌÉÍÙÈ ÆÕÎËÃÉÊ Ä×ÕÈ ÁÒÇÕÍÅÎÔÏ×, ÔÏ
ÅÓÔØ ÔÁËÁÑ ÆÕÎËÃÉÑ T , ÞÔÏ ÐÒÉ ÆÉËÓÁÃÉÉ ÐÅÒ×ÏÇÏ ÁÒÇÕÍÅÎÔÁ ÓÒÅÄÉ ÆÕÎËÃÉÊ
T
n
(u, v) = T (n, u, v) ×ÓÔÒÅÞÁÀÔÓÑ ×ÓÅ ×ÙÞÉÓÌÉÍÙÅ ÆÕÎËÃÉÉ Ä×ÕÈ ÁÒÇÕÍÅÎ-
ÔÏ×.
ôÁËÕÀ ÆÕÎËÃÉÀ ÍÏÖÎÏ ÐÏÓÔÒÏÉÔØ ÔÁË. æÉËÓÉÒÕÅÍ ÎÅËÏÔÏÒÕÀ ×ÙÞÉÓÌÉ-
ÍÕÀ ÎÕÍÅÒÁÃÉÀ ÐÁÒ, ÔÏ ÅÓÔØ ×ÙÞÉÓÌÉÍÏÅ ×ÚÁÉÍÎÏ ÏÄÎÏÚÎÁÞÎÏÅ ÓÏÏÔ×ÅÔÓÔ×ÉÅ
hu, vi ↔ [u, v] ÍÅÖÄÕ N × N É N; ÞÉÓÌÏ [u, v], ÓÏÏÔ×ÅÔÓÔ×ÕÀÝÅÅ ÐÁÒÅ hu, vi,
ÍÙ ÂÕÄÅÍ ÎÁÚÙ×ÁÔØ ÎÏÍÅÒÏÍ ÜÔÏÊ ÐÁÒÙ. åÓÌÉ ÔÅÐÅÒØ R ¡ Ä×ÕÍÅÓÔÎÁÑ ×Ù-
ÞÉÓÌÉÍÁÑ ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎËÃÉÑ ÄÌÑ ×ÙÞÉÓÌÉÍÙÈ ÏÄÎÏÍÅÓÔÎÙÈ ÆÕÎËÃÉÊ,
ÔÏ ×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ T , ÏÐÒÅÄÅ̾ÎÎÁÑ ÆÏÒÍÕÌÏÊ T (n, u, v) = R(n, [u, v]),
ÂÕÄÅÔ ÕÎÉ×ÅÒÓÁÌØÎÏÊ ÄÌÑ ×ÙÞÉÓÌÉÍÙÈ Ä×ÕÍÅÓÔÎÙÈ ÆÕÎËÃÉÊ. ÷ ÓÁÍÏÍ ÄÅ-
ÌÅ, ÐÕÓÔØ F ¡ ÐÒÏÉÚ×ÏÌØÎÁÑ ×ÙÞÉÓÌÉÍÁÑ ÆÕÎËÃÉÑ Ä×ÕÈ ÁÒÇÕÍÅÎÔÏ×. òÁÓ-
ÓÍÏÔÒÉÍ ×ÙÞÉÓÌÉÍÕÀ ÏÄÎÏÍÅÓÔÎÕÀ ÆÕÎËÃÉÀ f, ÏÐÒÅÄÅ̾ÎÎÕÀ ÓÏÏÔÎÏÛÅÎÉ-
ÅÍ f([u, v]) = F (u, v). ðÏÓËÏÌØËÕ R ÕÎÉ×ÅÒÓÁÌØÎÁ, ÎÁÊľÔÓÑ ÞÉÓÌÏ n, ÄÌÑ
ËÏÔÏÒÏÇÏ R(n, x) = f(x) ÐÒÉ ×ÓÅÈ x. äÌÑ ÜÔÏÇÏ n ×ÙÐÏÌÎÅÎÙ ÒÁ×ÅÎÓÔ×Á
T (n, u, v) = R(n, [u, v]) = f([u, v]) = F (u, v), É ÐÏÔÏÍÕ n-ÏÅ ÓÅÞÅÎÉÅ ÆÕÎË-
ÃÉÉ T ÓÏ×ÐÁÄÁÅÔ Ó F . éÔÁË, ÕÎÉ×ÅÒÓÁÌØÎÁÑ ÆÕÎËÃÉÑ ÔÒ¾È ÁÒÇÕÍÅÎÔÏ× ÐÏ-
ÓÔÒÏÅÎÁ.