Electron-doped cuprates as high-temperature superconductors 271
1
2
3
4
5
6
7
8
9
10
1
2
3
4
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
43X
© Woodhead Publishing Limited, 2011
Noda M., Tsukada A., Yamamoto H. and Naito M. (2005), ‘Origin of superconducting
carriers in “non-doped” T
'
-(La,RE)
2
CuO
4
(RE = Sm, Eu, Gd, Tb, Lu, and Y) prepared
by molecular beam epitaxy’, Physica C, 426–431, 220–224.
Okada H., Takano M. and Takeda Y. (1990), ‘Synthesis of Nd
2
CuO
4
-type R
2
CuO
4
(R = Y, Dy, Ho, Er, Tm) under high pressure’, Physica C, 166, 111–114.
Onose Y., Taguchi Y., Ishizaka K. and Tokura Y. (2004), ‘Charge dynamics in underdoped
Nd
2 – x
Ce
x
CuO
4
: Pseudogap and related phenomena’, Phys Rev B, 69, 024504 [13 pages].
Parkin S. S. P., Lee V. Y., Nazzal A. I., Savoy R., Beyers R. and La Placa S. J. (1988),
‘Tl
1
Ca
n – 1
Ba
2
Cu
n
O
2n + 3
(n = 1,2,3): A new class of crystal structures exhibiting volume
superconductivity at up to ≈ 110 K’, Phys Rev Lett, 61, 750–753.
Peng J. L., Li Z. Y., Greene R. L. (1991), ‘Growth and characterization of high-quality
single crystals of R
2 – x
Ce
x
CuO
4 – y
(R = Nd, Sm)’, Physica C, 177, 79–85.
Petrov A. N., Cherepanov V. A., Zuev A. Yu. and Zhukovsky V. M. (1988a), ‘Thermodynamic
stability of ternary oxides in Ln-M-O (Ln = La, Pr, Nd; M = Co, Ni, Cu) systems’,
J Solid State Chem, 77, 1–14.
Petrov A. N., Zuev A. Yu. and Cherepanov V. A. (1988b), ‘Thermodynamic stability of the
lanthanide cuprites Ln
2
CuO
4
and LnCuO
2
, where Ln = La, Pr, Nd, Sm, Eu or Gd’,
Russian J Phys Chem, 62, 1613–1615.
Petrov A. N., Zuev A. Yu. and Rodionova T. P. (1999), ‘Crystal and defect structure of
Nd
1.9
Ce
0.1
CuO
4 ± y
’, J Am Ceram Soc, 82, 1037–1044.
Prado F., Caneiro A. and Serquis A. (1995), ‘Thermogravimetric study of the reduction step
in Nd
1.85
Ce
0.15
Cu
1.01
O
y
as a function of the oxygen partial pressure’, Solid State
Commun, 94, 75–80.
Prozorov R., Giannetta R. W., Fournier P. and Greene R. L. (2000), ‘Evidence for nodal
quasiparticles in electron-doped cuprates from penetration depth measurements’, Phys
Rev Lett, 85, 3700–3703.
Radaelli P. G.., Jorgensen J. D., Schultz A. J., Peng J. L. and Greene R. L. (1994), ‘Evidence
of apical oxygen in Nd
2
CuO
y
determined by single-crystal neutron diffraction’, Phys
Rev B, 49, 15322–15326.
Sawa H., Suzuki S., Watanabe M., Akimitsu J., Matsubara H. et al. (1989),
‘Unusually simple crystal structure of an Nd-Ce-Sr-Cu-O superconductor’, Nature,
337, 347–348.
Schilling A., Cantoni M., Guo J. D. and Ott H. R. (1993), ‘Superconductivity above 130 K
in the Hg-Ba-Ca-Cu-O system’, Nature, 363, 56–58.
Schneider C. W., Barber Z. H., Evetts J. E., Mao S. N., Xi X. X. and Venkatesan T. (1994),
‘Penetration depth measurements for Nd
1.85
Ce
0.15
CuO
4
and NbCN thin films using a
kinetic inductance technique’, Physica C, 233, 77–84.
Schultz A. J., Jorgensen J. D., Peng J. L. and Greene R. L. (1996), ‘Single-crystal neutron-
diffraction structures of reduced and oxygenated Nd
2 – x
Ce
x
CuO
y
’, Phys Rev B, 53,
5157–5159.
Sekitani T., Naito M., Miura N. and Uchida K. (2002), ‘Kondo effect in the normal state of
T
'
-Ln
2 – x
Ce
x
CuO
4
(Ln = La, Pr, Nd)’, J Phys Chem Solids, 63, 1089–1092.
Sekitani T., Naito M. and Miura N. (2003), ‘Kondo effect in underdoped n-type
superconductors’, Phys. Rev. B, 67, 174503 [5 pages].
Serquis A., Prado F. and Caneiro A. (1999), ‘On the role of the reduction step in
Nd
1.85
Ce
0.15
Cu
1 ±
δ
O
y
: a study of thermodynamic properties and electrical resistivity at
high temperature’, Physica C, 313, 271–280.
Shannon R. D. and Prewitt C. T. (1969), ‘Effective ionic radii in oxides and fluorides’, Acta
Cryst B, 25, 925–946.