[8-88] Inoue T, Cox JE, Pilliar RM, Melcher AH. Effect of the surface geometry
of smooth and porous-coated titanium alloy on the orientation of fibrob-
lasts in vitro. J Biomed Mater Res 1987;21:107–126.
[8-89] Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin
P, Hildebrand HF, Iost A, Leroy JM. The relative influence of the topog-
raphy and chemistry of TiAl6V4 surfaces on osteoblastic cell behaviour.
Biomaterials 2000;21:1567–1577.
[8-90] Mustafa K, Pan J, Wroblewski J, Leygraf C, Arvidson K. Electrochemical
impedance spectroscopy and X-ray photoelectron spectroscopy analysis
of titanium surfaces cultured with osteoblast-like cells derived from
human mandibular bone. J Biomed Mater Res 2002;59:655–664.
[8-91] Lee TM, Chang E, Yang CY. Attachment and proliferation of neonatal rat
calvarial osteoblasts on Ti6Al4V: effect of surface chemistries of the
alloy. Biomaterials 2004;25:23–32.
[8-92] Zhu X, Chen J, Scheideler L, Reichl R, Geis-Gerstorfer J. Effects of
topography and composition of titanium surface oxides on osteoblast
responses. Biomaterials 2004;25:4087–4103.
[8-93] Hazan R, Brener R, Oon U. Bone growth to metal implants is regulated
by their surface chemical properties. Biomaterials 1993;14:570–574.
[8-94] Jasty M, Bragdon CR, Haire T, Mulroy RO, Harris WH. Comparison of
bone ingrowth into cobalt chrome sphere and titanium fiber mesh porous
coated cementless canine acetabular components. J Biomed Mater Res
1993;27:639–644.
[8-95] Simske SJ, Sachdeva R. Cranial bone apposition and ingrowth in a porous
nickel-titanium implant. J Biomed Mater Res 1995;29:527–533.
[8-96] Chang Y-S, Oka M, Kobayashi M, Gu H-O, Li Z-L, Nakamura T, Ikada Y.
Significance of interstitial bone ingrowth under load-bearing conditions:
a comparison between solid and porous implant materials. Biomaterials
1996;17:1141–1148.
[8-97] Li J, Liao H, Fartash B, Hermansson L. Surface-dimpled commercially
pure titanium implant and bone ingrowth. Biomaterials 1997;18:691–695.
[8-98] Kujala S, Ryhänen J, Jämsä T, Danilov A, Saaranenm J, Pramila A,
Tuukkanen J. Bone modeling controlled by a nickel-titanium shape mem-
ory alloy intramedullary nail. Biomaterials 2002;23:2535–2543.
[8-99] Castleman LS, Motzkin SM, Alicandri FP, Bonawit VL. Biocompatibility of
Nitinol alloy as an implant material. J Biomed Mater Res 1976;10:695–731.
[8-100] Nishiguchi S, Nakamura T, Kobayashi M, Kim H-M, Miyaji F, Kokubo T.
The effect of heat treatment on bone-bonding ability of alkali-treated tita-
nium. Biomaterials 1999;20:491–500.
[8-101] Villermaux F, Tabrizian M, Yahia L’H, Meunier M, Piron DL. Excimer
laser treatment of NiTi shape memory alloy biomaterials. Apply Surf Sci
1997;109/110:62–66.
[8-102] Montero-Ocampo C, Loprez H, Salinas Rodriguez A. Effect of compres-
sive straining on corrosion resistance of a shape memory Ni-Ti alloy in
ringer’s solution. J Biomed Mater Res 1996;32:583–591.
252 Bioscience and Bioengineering of Titanium Materials
Else_BBTM-OSHIDA_CH008.qxd 9/14/2006 5:48 PM Page 252