176 Thomas M. Makris et al.
complex by tetrahydrobiopterin. J. Biol. Chem.
273,
13502-13508.
133.
Sono, M., K.S. Eble, J.H. Dawson, and L.P. Hager
(1985).
Preparation and properties of ferrous
chloroperoxidase complexes with dioxygen, nitric-
oxide, and an alkyl isocyanide—spectroscopic
dissimilarities between the oxygenated forms of
chloroperoxidase and cytochrome-P-450. J. Biol.
Chem.
260, 5530-5535.
134.
Shikama, K. (1998). The molecular mechanism
of autoxidation for myoglobin and hemoglobin:
A venerable puzzle. Chem. Rev. 98, 1357-1374.
135.
Vojtechovsky, J., K. Chu, J. Berendzen,
R.M. Sweet, and I. Schlichting (1999). Crystal
structures of myoglobin-ligand complexes at near-
atomic resolution. Biophys. J. 11, 2153-2174.
136.
Miller, M.A., A. Shaw, and J. Kraut (1994). 2.2 A
structure of oxy-peroxidase as a model for the
transient enzyme: peroxide complex. Nat. Struct.
Biol. 1,524-531.
137.
Schunemann, V, C. Jung, A.X. Trautwein,
D.
Mandon, and R. Weiss (2000). Intermediates in
the reaction of substrate-free cytochrome P450cam
with peroxy acetic acid. FEBS
Lett.
479, 149-154.
138.
Brittain, T., A.R. Baker, C.S. Butler, R.H. Little,
D.J. Lowe, C. Greenwood et
al.
(1997). Reaction of
variant sperm-whale myoglobins with hydrogen
peroxide: The effects of mutating a histidine
residue in the haem distal pocket. Biochem. J. 326,
109-115.
139.
Tajima, K., K. Ishizu, H. Sakurai, and N.H. Ohya
(1986).
A possible model of hemoprotein-peroxide
complexes formed in an iron-tetraphenylporphyrin
system. Biochem. Biophys. Res. Commun. 135,
972-978.
140.
Tajima, K., J. Jinno, K. Ishizu, H, Sakurai, and
H. Ohya-Nishiguchi (1989). Direct evidence of
heme-tert-butyl peroxide adduct formation demon-
strated by simultaneous ESR and optical measure-
ments. Inorg. Chem. 28, 709-715.
141.
Balch, A.L., R.L, Hart, L. Latos-Grazynski, and
T.G. Traylor (1990). Nuclear magnetic resonance
studies of the formation of tertiary alkyl complexes
of iron(III) porphyrins and their reactions with
dioxygen. ^
y^m.
Chem. Soc. 112, 7382-7388.
142.
Balch, A.L. (1992). The reactivity of spectro-
scopically detected peroxy complexes of iron
porphyrins. Inorg. Chim. Acta 198-200, 297-307.
143.
Jinno, J., M. Shigematsu, K. Tajima, H. Sakurai,
H. Ohya-Nishiguchi, and K. Ishizu (1991). Coor-
dination structure and chemical reactivity of
hemoprotein-butyl peroxide complex. Biochem.
Biophys. Res. Commun. 176,
675-681.
144.
Tajima, K., T Edo, K. Ishizu, S. Imaoka,
Y.
Funae,
S. Oka et al. (1993). Cytochrome P-450-butyl
peroxide complex detected by ESR. Biochem.
Biophys. Res. Commun. 191, 157-164.
145.
Filizola, M. and G.H. Loew (2000). Probing the
role of protein environment in compound I forma-
tion of chloroperoxidase {C?0).J.Am. Chem. Soc.
Ill, 3599-3605.
146.
Loew, G. (2000). Structure, spectra, and function
of heme sites. Int. J. Quantun. Chem. 11, 54-70.
147.
Wirstam, M., M.R.A. Blomberg, and RE.M.
Siegbahn (1999). Reaction mechanism of com-
pound I formation in heme peroxidases: A density
functional theory study. J. Am. Chem. Soc. Ill,
10178-10185.
148.
Guengerich, F.P, D.R Ballou, and M.J. Coon
(1976).
Spectral intermediates in the reaction
of oxygen with purified liver microsomal cyto-
chrome P-450. Biochem. Biophys. Res. Commun.
70,951-956.
149.
Benson, D.E., K.S. Suslick, and S.G. Sligar
(1997).
Reduced oxy intermediate observed in
D251N cytochrome P450(cam). Biochemistry 36,
5104-5107.
150.
Yeom, H.Y. and S.G. Sligar (1997). Oxygen activa-
tion by cytochrome P450(BM-3): Effects of mutat-
ing an active site acidic residue. Arch. Biochem.
Biophys. 331, 209-2\6.
151.
Shimizu, N., K. Kobayashi, and K. Hayashi (1984).
The reaction of superoxide radical with catalase.
Mechanism of the inhibition of catalase by super-
oxide radical.
J.
Biol. Chem., 259, 4414-4418.
152.
Shimizu, N., K. Kobayashi, and K. Hayashi (1989).
Kinetics of the reaction of superoxide anion with
ferric horseradish peroxidase. Biochim. Biophys.
Acta 995, 133-137.
153.
Debey, P., E.J. Land, R. Santus, and A.J. Swallow
(1979).
Electron transfer from pyridinyl radicals,
hydrated electrons, CO2 and O2 to bacterial
cytochrome P450. Biochem. Biophys. Res.
Commun. 86, 953-960.
154.
Bonfils, C, J.L. Saldana, P Debey, R Maurel,
C. Balny, and P Douzou (1979). Fast photo-
chemical reactions of cytochrome P450 at subzero
temperatures. Biochimie, 61, 681-687.
155.
Kobayashi, K. and K. Hayashi (1981). One-
electron reduction in oxyform of hemoproteins.
J. Biol. Chem. 256, 12350-12354.
156.
Kobayashi, K., M. Amano, Y. Kanbara, and
K. Hayashi (1987). One-electron reduction of the
oxyform of 2,4-diacetyldeuterocytochrome
P450^^^.
J. Biol. Chem. 161, 5445-5447.
157.
Davydov, R.M., T Yoshida, M. Ikeda-Saito, and
B.M. Hoffman (1999). Hydroperoxy-heme oxyge-
nase generated by cryoreduction catalyzes the
formation of a-meso-hydroxyheme as detected
by EPR and ENDOR. J. Am. Chem. Soc. Ill,
10656-10657.
158.
Davydov, R., R. Kappl, J. Huettermann, and
J. A. Peterson (1991). EPR-spectroscopy of reduced
oxyferrous-P450cam. F£'55Le//. 295, 113-115.