5.2 Valuated Matroid 287
Remark 5.2.11. Greedy algorithms are fundamental in combinatorial op-
timization. Investigation of variants of greedy algorithms leads to many
interesting combinatorial structures. See, for example, Edmonds [68, 69],
Faigle [74], Lawler [171], and Welsh [333] (matroids and polymatroids);
Korte–Lov´asz–Schrader [163] (greedoids); Bouchet [15] and Chandrasekaran–
Kabadi [30] (delta matroids); Dress–Terhalle [51, 52, 53] (variants of val-
uated matroids); and Dress–Wenzel [55] and Murota [222] (valuated delta
matroids). 2
5.2.5 Valuated Bimatroid
In §2.3.7 we explained about bimatroids, which can be regarded as a variant
of matroids (see (2.86) in particular). Following Murota [221] we introduce
here a variant of valuated matroids in a similar vein.
Let S and T be disjoint finite sets and δ :2
S
×2
T
→ R ∪{−∞} be a map
such that
δ(X, Y )=ω((S \ X) ∪ Y )(X ⊆ S, Y ⊆ T ) (5.25)
for some valuated matroid (S ∪ T,ω) with ω(S) = −∞. Then (S, T, Λ) with
Λ = {(X, Y ) | δ(X, Y ) = −∞,X⊆ S, Y ⊆ T }
is a bimatroid due to (2.86). Note that (∅, ∅) ∈ Λ and that |X| = |Y | for
(X, Y ) ∈ Λ.
The axiom (VM) for ω can be translated into a condition on δ that (VB-1)
and (VB-2) below hold true for any (X, Y ) ∈ Λ and (X
,Y
) ∈ Λ:
(VB-1) For any x
∈ X
\ X, either (a1) or (b1) (or both) holds,
where
(a1) ∃y
∈ Y
\ Y :
δ(X, Y )+δ(X
,Y
) ≤ δ(X + x
,Y + y
)+δ(X
− x
,Y
− y
),
(b1) ∃x ∈ X \ X
:
δ(X, Y )+δ(X
,Y
) ≤ δ(X − x + x
,Y)+δ(X
− x
+ x, Y
).
(VB-2) For any y ∈ Y \Y
, either (a2) or (b2) (or both) holds, where
(a2) ∃x ∈ X \ X
:
δ(X, Y )+δ(X
,Y
) ≤ δ(X − x, Y − y)+δ(X
+ x, Y
+ y),
(b2) ∃y
∈ Y
\ Y :
δ(X, Y )+δ(X
,Y
) ≤ δ(X, Y − y + y
)+δ(X
,Y
− y
+ y).
Atriple(S, T, δ) (or quadruple (S, T, Λ, δ)) satisfying (VB-1) and (VB-2) is
named a valuated bimatroid.
We are now interested in optimal linked pairs (X, Y ) ∈ Λ of a specified
size k with respect to the value of δ. Define
r = max{|X||∃(X, Y ) ∈ Λ},
Λ
k
= {(X, Y ) ∈ Λ ||X| = |Y | = k} (0 ≤ k ≤ r),
δ
k
= max{δ(X, Y ) | (X, Y ) ∈ Λ
k
} (0 ≤ k ≤ r),
M
k
= {(X, Y ) ∈ Λ
k
| δ(X, Y )=δ
k
} (0 ≤ k ≤ r).