126
№1002.
а) x
2
+ 2xy + y
2
– m
2
= (x + y)
2
– m
2
= (x + y – m)(x + y + m);
б) p
2
– a
2
– 2ab – b
2
= p
2
– (a + b)
2
= (p – a – b)(p + a + b);
в) b
2
– c
2
– 8b + 16 = (b – 4)
2
– c
2
= (b – 4 – c)(b – 4 + c);
г) 9 – c
2
+ a
2
– 6a = (a – 3)
2
– c
2
= (a – 3 – c)(a – 3 + c).
№1003. а) x
2
– y
2
– x – y = (x – y)(x + y) – (x + y) = (x +y)(x – y – 1);
б) a
2
– b
2
– a + b = (a – b)(a + b) – (a – b) = (a – )(a + b – 1);
в) m + n + m
2
– n
2
= (m + n) + (m – n)(m + n) = (1 + m – n)(m + n);
г) k
2
– k – p
2
– p = (k – p)(k + p) – (k + p) = (k + p)(k – p – 1).
№1004. а) a – b + a
2
– b
2
= (a – b) + (a – b)(a + b) = (a – b)(1 + a + b);
б) c
2
+ d – d
2
+ c = (c – d)(c + d) + (c + d) = (c + d)(c – d + 1).
№1005.
а) ab
2
–a–b
3
+b=b
2
(a–b) – (a – b) = (b
2
– 1)(a – b) = (b – 1)(b + 1)(a – b);
б) bx
2
+2b
2
–b
3
–2x
2
=x
2
(b–2)+b
2
(2–b)=(x
2
– b
2
)(b – 2)=(x–b)(x + b)(b – 2);
в) x
3
+x
2
y–4y–4x=x
2
(x+y)–4(x+y)=(x
2
– 4)(x + y) = (x – 2)(x + 2)(x + y);
г) x
3
–3y
2
+3x
2
–xy
2
=x
2
(x+3)–y
2
(x + 3) = (x
2
– y
2
)(x + 3)=(x–y)(x+y)(x + 3).
№1006.
а) x
3
– x = 0, x(x
2
– 1) = 0, x(x – 1)(x + 1) = 0, x
1
= 0; x
2
= 1; x
3
= –1;
б) 9x – x
3
= 0, x(9 – x
2
) = 0, x(3 – x)(3 + x) = 0, x
1
= 0; x
2
= 3; x
3
= –3;
в) x
3
+ x
2
= 0, x
2
(x + 1) = 0, x
1
= 0; x
2
= –1;
г) 5x
4
–20x
2
=0, 5x
2
(x
2
–4)=0, 5x
2
(x – 2)(x + 2) = 0, x
1
=0; x
2
=2; x
3
=–2.
№1007.
а) x
3
+ x = 0, x(x
2
+ 1) = 0, x
1
= 0; больше нет, т.к. x
2
+ 1 ≠ 0 для любого x;
б) x
3
– 2x
2
= 0, x
2
(x – 2) = 0, x
1
= 0; x
2
= 2.
№1008.
x
3
– x = x(x
2
– 1) = x(x– 1)(x + 1).
Выражение делится на 6, т.к. хотя бы одно из x, x + 1, x + 2 четно и одно де-
лится на 3.
№1009.
Если 2a – 1, 2a + 1 — два последовательных нечетных числа, то
(2a + 1)
2
– (2a – 1)
2
= (2a + 1 – 2a + 1)(2a + 1 + 2a – 1) = 2(4a) = 8a
кратно 8.
№1010.
а) (6x–1)(6x+1) – (12x – 5)(3x + 1) = 36x
2
– 1 – (36x
2
+ 12x – 15x – 5) =
= 36x
2
– 1– 36x
2
+ 3x + 5 = 3x + 4, при x=0,2, 3x+4=3 ⋅ 0,2 + 4 = 4,6;
б) (5+2x)
2
–2,5x(8x+7)=25 + 20x + 4x
2
– 20x
2
– 17,5x=–16x
2
+ 2,5x + 25,
при x = –0,5, –16x
2
+ 2,5x + 25 = –16 ⋅ 0,25 + 2,5 ⋅ (–0,5) + 25 = 19,75.
№1011. y = 0,02x
2
;
а) A(15; 4,5) 0,02 ⋅ 15
2
= 4,5 ⇒ A ∈ графику;
б) B(–2,05; –0,12) 0,02 ⋅ (–2,02)
2
= 0,08405 ≠ –0,12 ⇒ B ∉ графику;
в) C(50; 50) 0,02 ⋅ 50
2
= 50 ⇒ C ∈ графику.
№1012. y = 0,24x + 6;
Т.к. график функции пересекается с Ox, то y = 0,
0,24x + 6 = 0, 0,24x = –6, x = 25, A(25; 0);
Т.к. график функции пересекается с Oy, то x = 0,
y = 0,24 ⋅ 0 + 6, y = 6, B(0; 6).