1.8. MATRIX FORMULATION FOR THICK LENSES 61
(f 1−a+hh·P ·f 1)
f 1
(−h·f 2·f 1+h·f 2·a−h·f 2·hh·P ·f 1+f 1·a·f 2−f 1·hh·a+f 1·hh·f 2)
(f 1·f 2)
P
−P ·h·f 2+a−f 2)
f 2
.
If the (0, 0) and (1, 1) elements are one, we have for hh a/P · f 1 and
h a/P · f 2, P is always −1/f
P (−1/f 2)(1 − a/f 1) − 1/f 1
P :
−1
f 2
·
1 −
a
f 1
−
1
f 1
hh :
a
P · f 1
h :
−a
P · f 2
M :
(f 1−a+hh·P ·f 1)
f 1
(−h·f 2·f 1+h·f 2·a−h·f 2·hh·P ·f 1+f 1·a·f 2−f 1·hh·a+f 1·hh·f 2)
(f 1·f 2)
P
−(P ·h·f 2+a−f 2)
f 2
f 1 ≡ 10 f 2 ≡ 10 a ≡ 100
M
10
0.81
f :
−1
P
hh 12.5 h −12.5 f −1.25.
Application 1.28. Consider the case where a 0, and compare the resulting
focal length f with 1/(1/f
1
+ 1/f
2
).
1.8.3.2 System of Two Thick Lenses
We consider two thick lenses and assume that lens 1 has the refractive index
n lens 2 the index nn. We also assume that the radii of curvature of the four
spherical surfaces are labeled r
1
to r
4
and that the distance between lens 1 and
lens 2 is a. The matrix for the system is obtained from the sequence of three
matrices (Figure 1.25).
We start on the right with the thick-lens matrix of the first lens, then the
translation matrix, and then to the left the thick-lens matrix of the second lens.
The calculation is shown in FileFig 1.29 and one obtains
1 + d
2
P
34
d
2
/nn
P
2
d
2
(P
45
/nn) + 1
1 a
01
1 + d
1
P
12
d
1
/n
P
1
d
1
(P
23
/n) + 1
(1.103)
with
P
12
−(1/r
1
)(n − 1)/n
P
23
−(1/r
2
)(1 − n)
P
34
−(1/r
3
)(nn − 1)/nn