5. Radiation Exchange Between Surfaces 591
Parallel surfaces:
For A
1
– A
2
, X = 0.50, Y = 1.00, L = 0.25, and F
12
= F
21
= 0.509
For A
3
– A
4
, X = 0.25, Y = 1.00, L = 0.50, and F
34
= F
43
= 0.165
For A
5
– A
6
, X = 0.50, Y = 0.25, L = 1.00, and F
56
= F
65
= 0.036
Perpendicular surfaces:
For surfaces A
1
– A
3
, A
1
– A
4
, A
2
– A
3
, and A
2
– A
4
:
X = 1.00, Y = 0.50, Z = 0.25 resulting in:
F
13
= F
23
= F
14
= F
24
= 0.167 and F
31
= F
32
= F
41
= F
42
= (0.5/0.25) × 0.167 =
0.334
For surfaces A
1
– A
5
, A
1
– A
6
, A
2
– A
5
, and A
2
– A
6
:
X = 0.50, Y = 1.00, Z = 0.25 resulting in:
F
15
= F
16
= F
25
= F
26
§ 0.079 and F
51
=F
61
= F
52
= F
62
= (1.0/0.25) × 0.079 = 0.315
For surface A
3
– A
5
, A
3
– A
6
, A
4
– A
5
, and A
4
– A
6
:
X = 0.25, Y = 1.00, Z = 0.50 resulting in:
F
35
= F
36
= F
45
= F
46
= 0.084 and F
53
= F
63
= F
54
= F
64
= (1.0/0.50) × 0.084 =
0.167
The emissive powers are found from Equation IVd.2.1. For example, E
b1
=
5.67E–8 × 500
4
W/m
2
. If we now substitute values in Equation IVd.5.9, we find:
»
»
»
»
»
»
»
»
¼
º
«
«
«
«
«
«
«
«
¬
ª
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
−−−−−
00.101.005.005.009.009.0
01.000.107.007.013.013.0
02.002.000.103.007.007.0
02.002.003
.000.107.007.0
05.005.010.010.000.131.0
06.006.012.012.036.00.1
1
2
3
4
5
6
ªº
«»
«»
«»
«»
«»
«»
«»
«»
¬¼
=
»
»
»
»
»
»
»
»
¼
º
«
«
«
«
«
«
«
«
¬
ª
16.12558
78.6072
94.10890
72.4150
33.2939
12.1063
Upon solving this set, we find; J
1
= 7536.7 W/m
2
, J
2
= 8265.2 W/m
2
, J
3
= 6032.9
W/m
2
, J
4
= 12,556.5 W/m
2
, J
5
= 9522.8 W/m
2
, and J
6
= 15,085.6 W/m
2
. The cor-
responding rates of heat transfer for the surfaces are:
1
Q
=
()
()( )
4
(5.67E 8) 500 7536.3
10.3/0.30.5
−× −
=−
−×
855.6 W. Similarly, we find
2
Q
= –305.6
W,
3
Q
= –844.5 W,
4
Q
= –1057.2 W,
5
Q
= 112.2 W, and
6
Q
= 832.6 W.
Such problems involving radiation exchanges between isothermal surfaces can be
easily solved with the software included on the accompanying CD-ROM.
We use a similar method to solve problems in which instead of surface tem-
peratures, the surface heat flux is specified. An adiabatic surface is a special case
of the heat flux boundary conditions in which the heat flux is zero. Thus, if sur-
face i is adiabatic, then E
bi
≡ J
i
, which is equivalent with
ε
i
≈ 0.