References 429
267. Marathe, K.B.: Spaces admitting gravitational fields. J. Math. Phys. 14, 228–233
(1973)
268. Marathe, K.B.: The mean curvature of gravitational fields. Physica 114A, 143–145
(1982)
269. Marathe, K.B.: Generalized gravitational instantons. In: Proc. Coll. on Diff. Geom.,
Debrecen (Hungary) 1984, pp. 763–775. Colloquia Math Soc. J. Bolyai, Hungary
(1987)
270. Marathe, K.B.: Gravitational instantons with source. In: Particles, Fields, and Gravi-
tation, Lodz, Poland 1998, AIP Conf. Proc., vol. 453, pp. 488–497. Amer. Inst. Phys.,
Woodbury, NY (1998)
271. Marathe, K.B., Martucci, G.: Geometric quantization of the nonisotropic harmonic
oscillator. Il Nuovo Cim. 79B, N. 1, 1–12 (1984)
272. Marathe, K.B., Martucci, G.: Quantization on V-manifolds. Il Nuovo Cim. 86B, N.
1, 103–109 (1985)
273. Marathe, K.B., Martucci, G.: The geometry of gauge fields. J. Geo. Phys. 6, 1–106
(1989)
274. Marathe, K.B., Martucci, G.: The Mathematical Foundations of Gauge Theories.
Studies in Mathematical Physics, vol. 5. North-Holland, Amsterdam (1992)
275. Marathe, K.B., Martucci, G., Francaviglia, M.: Gauge theory, geometry and topology.
Seminario di Matematica dell’Universit`adiBari262, 1–90 (1995)
276. Marathe, K.B., et al.: A geometric setting for field theories. In: G. M. Rassias (ed.)
Topology, Analysis and Applications. World Sci., Singapore (1992)
277. Marcolli, M.: Seiberg–Witten Gauge Theory. Texts and Readings in Math., vol. 17.
Hindustan Book Agency, New Delhi (1999)
278. Marsden, J.: Applications of Global Analysis in Mathematical Physics. Publish or
Perish, Inc., Boston (1974)
279. Massey, W.S.: A basic course in algebraic topology. Springer, New York (1991)
280. Mathai, V., Quillen, D.: Superconnections, thom classes and equivariant differential
forms. Topology 25, 85–110 (1986)
281. Matumoto, T.: Three Riemannian metrics on the moduli space of BPST-instantons
over S
4
.HiroshimaMath.J.19, 221–224 (1989)
282. McDuff, D., Salamon, D.: J-holomorphic Curves and Quantum Cohomology. Univer-
sity Lect. Series, # 6. Amer. Math. Soc., Providence (1994)
283. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford University
Press, Oxford (1995)
284. Milnor, J.: Morse Theory. Ann. of Math. Studies, No. 51. Princeton University Press,
Princeton (1973)
285. Milnor, J., Husemoller, D.: Symmetric Bilinear Forms. Springer-Verlag, Berlin (1973)
286. Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Ann. of Math. Studies, No. 76.
Princeton University Press, Princeton (1974)
287. Modugno, M.: Sur quelques propri´et´es de la double 2-forme gravitationnelle w. Ann.
Inst. Henri Poincar´e XVIII, 251–262 (1973)
288. Moore, G., Seiberg, N.: Classical and quantum conformal field theory. Comm. Math.
Phys. 123, 177–254 (1989)
289. Morgan, J., Tian, G.: Ricci Flow and the Poincar’e Conjecture. Clay Mathematics
Monographs vol. 3. Amer. Math. Soc., Providence (2007)
290. Morgan, J.W.: Comparison of Donaldson polynomial invariants with their algebro-
geometric analogues. Topology 32, 449–488 (1993)
291. Morgan, J.W., O’Grady, K.: Differential Topology of Complex Surfaces. Lect. Notes
in Math. # 1545. Springer-Verlag, Berlin (1993)
292. Morse, M., Cairns, S.: Critical Point Theory in Global Analysis and Differential Topol-
ogy. Academic Press, New York (1969)
293. Mr´owka, T., Ozsv´ath, P., Yu, B.: Seiberg–Witten monopoles on Seifert fibered spaces.
Comm. Anal. Geom. 5(3), 685–791 (1997)