References 427
215. Kamber, F.W., Tondeur, P.: Foliated Bundles and Characteristic Classes. Lect. Notes
in Math., #493. Springer-Verlag, Berlin (1975)
216. Karoubi, M.: K-Theory. Springer-Verlag, Berlin (1978)
217. Kassel, C., Turaev, V.: Braid Groups. Grad. Texts in Math., #247. Springer-Verlag,
New York (2008)
218. Kauffman, L.H.: Knots and Physics. Series on Knots and Everything - vol. 1, 3rd
Edition. World Scientific, Singapore (2001)
219. Khovanov, M.: A categorification of the Jones polynomial. Duke Math. J. 101, 359–
426 (2000)
220. Killingback, T.P.: The Gribov ambiguity in gauge theories on the four-torus. Phys.
Lett. 138B, 87–90 (1984)
221. Kirby, R., Melvin, P.: Evaluation of the 3-manifold invariants of Witten and
Reshetikhin–Turaev. In: S.K. Donaldson, C.B. Thomas (eds.) Geometry of Low-
dimensional Manifolds, vol. II, Lect. Notes # 151, pp. 101–114. London Math. Soc.,
London (1990)
222. Kirby, R., Melvin, P.: The 3-manifold invariants of Witten and Reshetikhin–Turaev
for sl(2, C). Inven. Math. 105, 473–545 (1991)
223. Kirillov, A.N., Reshetikhin, N.Y.: Representations of the algebra U
q
(SL(2, C)), q-
orthogonal polynomials and invariants of links. In: V.G. Kac (ed.) Infinite dimensional
Lie algebras and groups, pp. 285–339. World Sci., Singapore (1988)
224. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess–Zumino models in
two dimensions. Nucl. Phys. B 247, 83–103 (1984)
225. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley-
Interscience, New York (1963)
226. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 2. Wiley-
Interscience, New York (1969)
227. Kock, J.: Frobenius Algebras and 2D Topological Quantum Field Theories. LMS
Student Texts, vol. 59. Cambridge University Press, Cambridge (2004)
228. Kock, J., Vainsencher, I.: An invitation to quantum cohomolgy: Kontsevich’s formula
for rational plane curves. Prog. in Math., vol. 249. Birkh¨auser, Boston (2007)
229. Kodiyalam, V., Sunder, V.S.: Topological quantum field theories from subfactors.
Res. Notes in Math., vol. 423. Chapman & Hall/CRC, London (2001)
230. Kohno, T.: Topological invariants for three manifolds using representations of the
mapping class groups I. Topology 31, 203–230 (1992)
231. Kohno, T.: Topological invariants for three manifolds using representations of the
mapping class groups II: Estimating tunnel number of knots. In: Mathematical As-
pects of Conformal and Topological Field Theories and Quantum Groups, Contem-
porary Math., vol. 175, pp. 193–217. Amer. Math. Soc., Providence (1994)
232. Kohno, T.: Conformal Field Theory and Topology. Trans. math. monographs, vol.
210. Amer. Math. Soc., Providence (2002)
233. Kondracki, W., Rogulski, J.: On the stratification of the orbit space for the action of
automorphisms on connections. Dissertationes Math. (Warszawa) CCL, 1–62 (1986)
234. Kondraski, W., Sadowski, P.: Geometric structure on the orbit space of gauge con-
nections. J. Geo. Phys. 3, 421–434 (1986)
235. Kontsevich, M.: Feynman diagrams and low-dimensional topology. In: First European
Cong. Math. vol. II Prog. in Math., # 120, pp. 97–121. Birk
¨
hauser, Berlin (1994)
236. Kostant, B., Sternberg, S.: Symplectic reduction, BRS cohomology, and infinite-
dimensional Clifford algebras. Ann. Phys. 176, 49–113 (1987)
237. Kotschick, D., Morgan, J.W.: SO(3)-invariants for 4-manifolds with b
+
2
=1.II. J.
Diff. Geom. 39, 433–456 (1994)
238. Kronheimer, P.B., Mr´owka, T.S.: Gauge theory for embedded surfaces I. Topology
32, 773–826 (1993)
239. Kronheimer, P.B., Mr´owka, T.S.: Recurrence relations and asymptotics for four-
manifold invariants. Bull. Amer. Math. Soc. 30, 215–221 (1994)