ɋɥɟɞɨɜɚɬɟɥɶɧɨ, ɞɨɩɭɫɬɢɦɵɟ ɡɧɚɱɟɧɢɹ ɷɧɟɪɝɢɢ (8) ɢ ɨɬɜɟɱɚɸɳɢɟ ɢɦ ɮɭɧɤɰɢɢ
ɢɦɟɸɬ ɫɥɟɞɭɸɳɢɣ ɜɢɞ:)( y)
)2/1(
0
Z nE
n
= , ...,2,1,0 n , (10)
)()(
0
yyy
ɨɫɰ
nn
\ ) . (11)
Ɍɚɤɢɦ ɨɛɪɚɡɨɦ, ɬɟ ɪɟɲɟɧɢɹ ɧɚɲɟɣ ɢɫɯɨɞɧɨɣ ɡɚɞɚɱɢ, ɤɨɬɨɪɵɟ ɞɨɩɭɫɤɚɸɬ
ɩɪɟɞɫɬɚɜɥɟɧɢɟ ɜ ɮɨɪɦɟ (4), ɧɚɣɞɟɧɵ:
)/(),,(
//
,,
qBcpyeCzyx
x
ɨɫɰ
n
zpixpi
npp
zx
zx
\ \
==
. (12)
Ʉɜɚɧɬɨɜɵɦɢ ɱɢɫɥɚɦɢ ɧɚɣɞɟɧɧɵɯ ɫɬɚɰɢɨɧɚɪɧɵɯ ɫɨɫɬɨɹɧɢɣ ɫɥɭɠɚɬ
ɜɟɥɢɱɢɧɵ , ɫ ɧɟɩɪɟɪɵɜɧɵɦ ɫɩɟɤɬɪɨɦ ɡɧɚɱɟɧɢɣ ɢ ɱɢɫɥɨ , ɩɪɢɧɢɦɚɸɳɟɟ
ɬɨɥɶɤɨ ɞɢɫɤɪɟɬɧɵɟ ɡɧɚɱɟɧɢɹ 0, 1, 2, … . ɗɧɟɪɝɢɹ ɫɬɚɰɢɨɧɚɪɧɨɝɨ ɫɨɫɬɨɹɧɢɹ,
x
p
z
pn
)2/1(
2
0
2
,
Z H n
m
p
z
np
z
= , (13)
ɢɦɟɟɬ ɜɢɞ ɫɭɦɦɵ ɷɧɟɪɝɢɢ ɫɜɨɛɨɞɧɨɝɨ ɞɜɢɠɟɧɢɹ ɱɚɫɬɢɰɵ ɜɞɨɥɶ ɨɫɢ ɫ
ɢɦɩɭɥɶɫɨɦ ɢ ɞɢɫɤɪɟɬɧɵɯ ɷɧɟɪɝɟɬɢɱɟɫɤɢɯ ɭɪɨɜɧɟɣ (10), ɧɚɡɵɜɚɟɦɵɯ
ɭɪɨɜɧɹɦɢ Ʌɚɧɞɚɭ.
z
z
p
ɍɪɨɜɧɢ (13) ɧɟ ɡɚɜɢɫɹɬ ɨɬ ɜɟɥɢɱɢɧɵ ɢ, ɫɥɟɞɨɜɚɬɟɥɶɧɨ, ɢɦɟɸɬ
ɛɟɫɤɨɧɟɱɧɭɸ ɤɪɚɬɧɨɫɬɶ ɜɵɪɨɠɞɟɧɢɹ. ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɪɟɲɟɧɢɟɦ ɭɪɚɜɧɟɧɢɹ
ɒɪɟɞɢɧɝɟɪɚ, ɩɪɢɧɚɞɥɟɠɚɳɢɦ ɨɩɪɟɞɟɥɟɧɧɨɣ ɷɧɟɪɝɢɢ (13), ɹɜɥɹɟɬɫɹ ɧɟ ɬɨɥɶɤɨ
ɮɭɧɤɰɢɹ (12), ɧɨ ɢ ɥɸɛɚɹ ɥɢɧɟɣɧɚɹ ɤɨɦɛɢɧɚɰɢɹ ɬɚɤɢɯ ɮɭɧɤɰɢɣ ɫɨ
ɜɫɟɜɨɡɦɨɠɧɵɦɢ ɡɧɚɱɟɧɢɹɦɢ . ɉɨɫɤɨɥɶɤɭ ɫɩɟɤɬɪ ɧɟɩɪɟɪɵɜɟɧ, ɭɤɚɡɚɧɧɚɹ
ɥɢɧɟɣɧɚɹ ɤɨɦɛɢɧɚɰɢɹ ɜ ɨɛɳɟɦ ɫɥɭɱɚɟ ɡɚɩɢɲɟɬɫɹ ɜ ɜɢɞɟ ɢɧɬɟɝɪɚɥɚ ɩɨ
x
p
x
p
x
p
x
p
)/()()(
/
/
,
qBcpyepCdpe
x
ɨɫɰ
n
xpi
xx
zpi
np
x
z
z
\ \
³
f
f
=
=
r , (14)
ɝɞɟ ) – ɩɪɨɢɡɜɨɥɶɧɚɹ ɮɭɧɤɰɢɹ.(
x
pC
Ɉɬɦɟɬɢɦ, ɱɬɨ ɜɟɤɬɨɪɧɵɦ ɩɨɬɟɧɰɢɚɥɨɦ (1) ɨɩɢɫɵɜɚɟɬɫɹ ɦɚɝɧɢɬɧɨɟ ɩɨɥɟ
ɫ ɤɨɦɩɨɧɟɧɬɚɦɢ
AB rot
0
yx
BB , BB
z
. (15)
ȼ ɤɥɚɫɫɢɱɟɫɤɨɣ ɦɟɯɚɧɢɤɟ ɞɜɢɠɟɧɢɟ ɡɚɪɹɠɟɧɧɨɣ ɱɚɫɬɢɰɵ ɜ ɨɞɧɨɪɨɞɧɨɦ
ɦɚɝɧɢɬɧɨɦ ɩɨɥɟ, ɩɚɪɚɥɥɟɥɶɧɨɦ ɨɫɢ , ɩɪɟɞɫɬɚɜɥɹɟɬɫɹ ɤɚɤ ɪɟɡɭɥɶɬɚɬ ɧɚɥɨɠɟɧɢɹ
ɪɚɜɧɨɦɟɪɧɨɝɨ ɩɪɹɦɨɥɢɧɟɣɧɨɝɨ ɞɜɢɠɟɧɢɹ ɫ ɢɦɩɭɥɶɫɨɦ ɜɞɨɥɶ ɨɫɢ ɢ
ɜɪɚɳɟɧɢɹ ɫ ɱɚɫɬɨɬɨɣ ɜ ɩɥɨɫɤɨɫɬɢ
z
z
p z
mcqB /
0
Z y
, ɩɨ ɨɤɪɭɠɧɨɫɬɢ ɪɚɞɢɭɫɚ
34