Ƚɥɚɜɚ 6. ɁȺȾȺɑɂ ɈȻ ɈɋɐɂɅɅəɌɈɊȺɏ
Ʉ ɩɪɟɞɫɬɚɜɥɟɧɢɸ ɨ ɝɚɪɦɨɧɢɱɟɫɤɨɦ ɨɫɰɢɥɥɹɬɨɪɟ ɩɪɢɜɨɞɢɬ ɪɚɫɫɦɨɬɪɟɧɢɟ
ɞɢɧɚɦɢɤɢ ɮɢɡɢɱɟɫɤɨɣ ɫɢɫɬɟɦɵ ɜɛɥɢɡɢ ɟɟ ɩɨɥɨɠɟɧɢɹ ɭɫɬɨɣɱɢɜɨɝɨ ɪɚɜɧɨɜɟɫɢɹ.
ȼ ɬɨɱɤɟ ɪɚɜɧɨɜɟɫɢɹ ɩɨɬɟɧɰɢɚɥɶɧɚɹ ɷɧɟɪɝɢɹ ɫɢɫɬɟɦɵ ɢɦɟɟɬ ɦɢɧɢɦɭɦ. ɉɨɷɬɨɦɭ
ɡɚɜɢɫɢɦɨɫɬɶ ɩɨɬɟɧɰɢɚɥɶɧɨɣ ɷɧɟɪɝɢɢ ɨɬ ɤɨɨɪɞɢɧɚɬɵ
, ɯɚɪɚɤɬɟɪɢɡɭɸɳɟɣ
ɨɬɤɥɨɧɟɧɢɟ ɨɬ ɩɨɥɨɠɟɧɢɹ ɪɚɜɧɨɜɟɫɢɹ, ɜ ɩɟɪɜɨɦ ɩɪɢɛɥɢɠɟɧɢɢ ɩɨ ɫɬɟɩɟɧɹɦ
ɬɚɤɨɣ ɤɨɨɪɞɢɧɚɬɵ ɹɜɥɹɟɬɫɹ ɤɜɚɞɪɚɬɢɱɧɨɣ:
2/)(
2
xKxU , 0!
. (I)
ȼ ɫɥɭɱɚɟ ɱɚɫɬɢɰɵ ɦɚɫɫɵ ɟɟ ɨɞɧɨɦɟɪɧɨɟ ɞɜɢɠɟɧɢɟ ɫ ɩɨɬɟɧɰɢɚɥɶɧɨɣ
ɷɧɟɪɝɢɟɣ (I) ɜ ɤɥɚɫɫɢɱɟɫɤɨɣ ɦɟɯɚɧɢɤɟ ɩɪɟɞɫɬɚɜɥɹɟɬ ɫɨɛɨɣ ɝɚɪɦɨɧɢɱɟɫɤɨɟ
ɤɨɥɟɛɚɧɢɟ ɫ ɱɚɫɬɨɬɨɣ
m
mK /
0
Z . (II)
ȼ ɫɜɹɡɢ ɫ ɷɬɢɦ ɜɵɪɚɠɟɧɢɟ (I) ɧɚɡɵɜɚɸɬ ɩɨɬɟɧɰɢɚɥɨɦ ɝɚɪɦɨɧɢɱɟɫɤɨɝɨ
ɨɫɰɢɥɥɹɬɨɪɚ (oscillate – ɧɚ ɚɧɝɥɢɣɫɤɨɦ ɨɡɧɚɱɚɟɬ ɤɨɥɟɛɚɬɶɫɹ, ɜɢɛɪɢɪɨɜɚɬɶ). ȼ
ɤɥɚɫɫɢɱɟɫɤɨɣ ɦɟɯɚɧɢɤɟ ɩɨɥɧɚɹ ɷɧɟɪɝɢɹ ɨɫɰɢɥɥɹɬɨɪɚ H – ɫɭɦɦɚ ɤɢɧɟɬɢɱɟɫɤɨɣ
ɷɧɟɪɝɢɢ ɢ ɩɨɬɟɧɰɢɚɥɶɧɨɣ – ɦɨɠɟɬ ɩɪɢɧɢɦɚɬɶ ɥɸɛɨɟ ɡɧɚɱɟɧɢɟ, ɱɬɨ
ɫɨɨɬɜɟɬɫɬɜɭɟɬ ɜɨɡɦɨɠɧɨɫɬɢ ɡɚɞɚɬɶ ɩɪɨɢɡɜɨɥɶɧɭɸ ɜɟɥɢɱɢɧɭ ɚɦɩɥɢɬɭɞɵ
ɤɨɥɟɛɚɧɢɣ (ɩɪɢ ɷɬɨɦ ɞɥɹ ɩɪɢɦɟɧɢɦɨɫɬɢ ɩɪɢɛɥɢɠɟɧɢɹ (I) ɚɦɩɥɢɬɭɞɚ ɤɨɥɟɛɚɧɢɣ
ɨɫɰɢɥɥɹɬɨɪɚ, ɤɨɧɟɱɧɨ, ɞɨɥɠɧɚ ɛɵɬɶ ɞɨɫɬɚɬɨɱɧɨ ɦɚɥɨɣ). ȼ ɤɜɚɧɬɨɜɨɣ ɠɟ
ɦɟɯɚɧɢɤɟ ɜɫɟ ɫɬɚɰɢɨɧɚɪɧɵɟ ɫɨɫɬɨɹɧɢɹ ɨɫɰɢɥɥɹɬɨɪɚ ɩɪɢɧɚɞɥɟɠɚɬ ɞɢɫɤɪɟɬɧɵɦ
ɭɪɨɜɧɹɦ ɷɧɟɪɝɢɢ:
)2/1(
0
Z H n
n
= , ...,2,1,0 n . (III)
Ɉɬɥɢɱɢɬɟɥɶɧɨɣ ɱɟɪɬɨɣ ɷɧɟɪɝɟɬɢɱɟɫɤɨɝɨ ɫɩɟɤɬɪɚ ɝɚɪɦɨɧɢɱɟɫɤɨɝɨ
ɨɫɰɢɥɥɹɬɨɪɚ ɜ ɤɜɚɧɬɨɜɨɣ ɦɟɯɚɧɢɤɟ ɹɜɥɹɟɬɫɹ ɬɨ, ɱɬɨ ɭɪɨɜɧɢ ɷɧɟɪɝɢɢ (III)
ɪɚɫɩɨɥɨɠɟɧɵ ɱɟɪɟɡ ɪɚɜɧɵɟ ɢɧɬɟɪɜɚɥɵ
0
Z= . ɗɬɨɬ ɮɚɤɬ ɢɝɪɚɟɬ
ɮɭɧɞɚɦɟɧɬɚɥɶɧɭɸ ɪɨɥɶ ɜɨ ɦɧɨɝɢɯ ɡɚɞɚɱɚɯ ɨ ɞɢɧɚɦɢɤɟ ɫɥɨɠɧɵɯ ɫɢɫɬɟɦ ɜɛɥɢɡɢ
ɬɨɱɤɢ ɦɢɧɢɦɭɦɚ ɷɧɟɪɝɢɢ, ɩɨɡɜɨɥɹɹ ɜɜɟɫɬɢ ɩɪɟɞɫɬɚɜɥɟɧɢɟ ɨ «ɤɜɚɡɢɱɚɫɬɢɰɚɯ» –
ɤɜɚɧɬɚɯ ɷɧɟɪɝɢɢ , ɨɬɜɟɱɚɸɳɢɯ ɪɚɡɥɢɱɧɵɦ ɤɨɥɟɛɚɬɟɥɶɧɵɦ ɦɨɞɚɦ ɫɢɫɬɟɦɵ
(
k
Z=
k – ɧɨɦɟɪ ɦɨɞɵ).
ȼ ɤɜɚɧɬɨɜɨɣ ɦɟɯɚɧɢɤɟ ɤɥɚɫɫɢɱɟɫɤɚɹ ɤɚɪɬɢɧɚ ɤɨɥɟɛɚɧɢɣ ɨɫɰɢɥɥɹɬɨɪɚ
)(
ɭɬɪɚɱɢɜɚɟɬ ɫɦɵɫɥ. Ʉɨɝɞɚ ɝɨɜɨɪɹɬ ɨ ɤɨɥɟɛɚɧɢɹɯ ɤɜɚɧɬɨɜɨɝɨ ɨɫɰɢɥɥɹɬɨɪɚ,
ɧɚɩɪɢɦɟɪ, ɜɞɨɥɶ ɨɫɢ
, ɬɨ ɨɛɵɱɧɨ ɢɦɟɸɬ ɜɜɢɞɭ ɫɬɚɰɢɨɧɚɪɧɵɟ ɫɨɫɬɨɹɧɢɹ,
ɨɩɢɫɵɜɚɟɦɵɟ ɜɨɥɧɨɜɵɦɢ ɮɭɧɤɰɢɹɦɢ
)(x
n
\ . əɜɧɵɣ ɜɢɞ ɬɚɤɢɯ ɮɭɧɤɰɢɣ ɭɤɚɡɚɧ
ɧɢɠɟ ɜ ɪɟɲɟɧɢɹɯ ɡɚɞɚɱ.
22