ɝɞɟ
)sincos(
2
2
1
2
2
1
ak
k
k
iak
C
eB
aik
. (13)
ɇɚɣɞɟɧɧɵɟ ɮɭɧɤɰɢɢ ɜɟɳɟɫɬɜɟɧɧɵ, ɢɯ ɝɪɚ
Ɋɢɫ. 5.6
Ɉɬɦɟɬɢɦ ɮɢɤɫɢɪɨɜɚɧɧɨɦ ɤɚɤɢɦ-ɥɢɛɨ ɧɨɪɦɢɪɨɜɨɱɧɵɦ ɭɫɥɨɜɢɟɦ
ɪɚɡɦɚɯɟ ɨɫɰɢɥɥɹɰɢɣ ɜɨɥɧɨɜɨɣ ɮɭɧɤɰɢɢ ɨɛɥɚɫɬɢ 2 ɡɧɚɱɟɧɢɹ ɜɨɥɧɨɜɨɣ
ɚɡɦɚɯ ɨɫɰɢɥɥɹɰɢɣ
ɮɢɤɢ ɢɡɨɛɪɚɠɟɧɵ ɧɚ ɪɢɫ. 5.6 ɢ 5.7.
Ɋɢɫ. 5.7
ɨɛɥɚɫɬɶ 1
ɱɟɬ.
<
ɨɛɥɚɫɬɶ 2
ɨɛɥɚɫɬɶ 3
x
x = a
x = -a
ɧɟɱ.
ɨɛɥɚɫɬɶ 3
ɨɛɥɚɫɬɶ 2
ɨɛɥɚɫɬɶ 1
x = a
x = -a
x
<
, ɱɬɨ ɩɪɢ
ɜɧɟ
ɮɭɧɤɰɢɢ ɜɧɭɬɪɢ ɨɛɥɚɫɬɢ 2 ɜ ɨɛɳɟɦ ɫɥɭɱɚɟ ɢɦɟɸɬ ɡɚɦɟɬɧɨ ɦɟɧɶɲɭɸ ɜɟɥɢɱɢɧɭ.
ɍɤɚɡɚɧɧɨɟ ɪɚɡɥɢɱɢɟ ɨɫɨɛɟɧɧɨ ɫɭɳɟɫɬɜɟɧɧɨ ɩɪɢ
1
k <<
2
k , ɤɨɝɞɚ ɜ (10) ɢɥɢ (13)
ɞɨɦɢɧɢɪɭɟɬ ɱɥɟɧ, ɩɪɨɩɨɪɰɢɨɧɚɥɶɧɵɣ
12
/ kk . ɗɬɨ ɨɡɧɚɱɚɟɬ, ɱɬɨ ɩɪɢ ɦɚɥɨɣ
ɷɧɟɪɝɢɢ ( mk 2/
2
1
2
= H <<
0
U ) ɩɥɨɬɧɨɫɬɶ ɜɟɪɨɹɬɧɨɫɬɢ ɨɛɧɚɪɭɠɟɧɢɹ ɱɚɫɬɢɰɵ ɜ
ɨɛɥɚɫɬɢ ɩɨɬɟɧɰɢɚɥɶɧɨɣ ɹɦɵ ɜ ɨɛɳɟɦ ɫɥɭ ɳɟɫɬɜɟɧɧɨ ɦɟɧɶɲɟ, ɱɟɦ ɜɧɟ ɹɦɵ.
ɋɨɨɬɜɟɬɫɬ ɚɠɟ (2) ɢ (3) ɫɥɟɞɭɟɬ, ɱɬɨ ɤɨɷɮɮɢɰɢɟɧɬ ɩɪɨɯɨɠɞɟɧɢɹ
ɱɟɪɟɡ ɨɛɥɚɫɬɶ 2 ɩɪɢ 0
1
ok ɫɬɪɟɦɢɬɫɹ ɤ ɧɭɥɸ, ɚ ɤɨɷɮɮɢɰɢɟɧɬ ɨɬɪɚɠɟɧɢɹ
ɱɚɫɬɢɰɵ ɨɬ ɫɬɟɧɨɤ ɩɨɬɟɧɰɢɚɥɶɧɨɣ ɹɦɵ ɫɬɪɟɦɢɬɫɹ ɤ ɟɞɢɧɢɰɟ.
ɂɫɤɥɸɱɟɧɢɟ ɩɪɟɞɫɬɚɜɥɹɸɬ ɫɥɭɱɚɢ, ɜ ɤɨɬɨɪɵɯ ɩɪɨɢɡɜɨɞɧɚɹ ɜɨɥɧɨɜɨɣ
ɮɭɧɤɰɢɢ ɧɚ ɝɪɚɧɢɰɚɯ ɹɦɵ ɨɛɪɚɳɚɟɬɫɹ ɜ ɧɭɥɶ, ɬɚɤ ɱɬɨ ɪ
ɱɚɟ ɫɭ
ɜɟɧɧɨ, ɢɡ ɜɵɪ ɧɢɣ
ɜɨɥɧɨɜɨɣ ɮɭɧɤɰɢɢ ɨɤɚɡɵɜɚɟɬɫɹ ɨɞɧɢɦ ɢ ɬɟɦ ɠɟ ɜɨ ɜɫɟɯ ɨɛɥɚɫɬɹɯ ɨɫɢ
. ȼ ɷɬɢɯ
ɫɥɭɱɚɹɯ ɱɥɟɧ ɫ
12
/ kk ɜ (10) ɢɥɢ (13) ɪɚɜɟɧ ɧɭɥɸ. Ⱦɥɹ ɫɨɫɬɨɹɧɢɹ ɫ ɧɟɱɟɬɧɨɣ
ɜɨɥɧɨɜɨɣ ɮɭɧɤɰɢɟɣ ɬɚɤ ɩɪɨɢɫɯɨɞɢɬ ɩɪɢ ɜɵɩɨɥɧɟɧɢɢ ɭɫɥɨɜɢɹ
0cos
2
ak , (14)
ɬɨ ɟɫɬɶ ɩɪɢ ɭɫɥɨɜɢɢ, ɱɬɨ ɧɚ ɞɥɢɧɟ
ɞɟɛɪɨɣɥɟɜɫɤɨɣ ɞɥɢɧɵ ɜɨɥɧɵ /2/ k
ɩɨɬɟɧɰɢɚɥɶɧɨɣ ɹɦɵ ad 2 ɩɨɥɨɜɢɧɚ
2
S O ɭɤɥɚɞɵɜɚɟɬɫɹ ɧɟɱɟɬɧɨɟ ɪɚɡ. Ⱦɥɹ
ɚɧɫ» ɧ
ɱɢɫɥɨ
ɫɨɫɬɨɹɧɢɹ ɫ ɱɟɬɧɨɣ ɜɨɥɧɨɜɨɣ ɮɭɧɤɰɢɟɣ ɩɨɞɨɛɧɵɣ «ɪɟɡɨɧ ɚɫɬɭɩɚɟɬ ɜ
ɫɥɭɱɚɟ
11