REFERENCES
[1] M. Bloom, J.L. Thewalt, Time and distance scales of membrane domain organization, Mol.
Membr. Biol. 12 (1995) 9–13.
[2] K. Jorgensen, J.H. Ipsen, O.G. Mouritsen, M.J. Zuckermann, The effect of anaesthetics on the
dynamic heterogeneity of lipid membranes, Chem. Phys. Lipids 65 (1993) 205–216.
[3] K. Jørgensen, O.G. Mouritsen, Phase separation dynamics and lateral organization of two-
component lipid membranes, Biophys. J. 69 (1995) 942–954.
[4] C. Leidy, W.F. Wolkers, K. Jørgensen, O.G. Mouritsen, J.H. Crowe, Lateral organization
and domain formation in a two-component lipid membrane system, Biophys. J. 80 (2001)
1819–1828.
[5] E.J. Shimshick, H.M. McConnell, Lateral phase separation in phospholipid membranes,
Biochemistry 12 (1973) 2351–2360.
[6] P.F.F. Almeida, W.L.C. Vaz, T.E. Thompson, Lateral diffusion in the liquid phases of dim-
yristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis, Biochemistry 31
(1992) 6739–6747.
[7] B.R. Copeland, H.M. McConnell, The rippled structure in bilayer membranes of
phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol, Biochim.
Biophys. Acta 599 (1980) 95–109.
[8] T.P.W. McMullen, R.N. McElhaney, New aspects of the interaction of cholesterol with
dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning
calorimetry, Biochim. Biophys. Acta 1234 (1995) 90–98.
[9] S. Karmakar, V.A. Raghunathan, Cholesterol-induced modulated phase in phospholipid mem-
branes, Phys. Rev. Lett. 91 (2003) 098102.
[10] R. Welti, M. Glaser, Lipid domains in model and biological membranes, Chem. Phys. Lipids 73
(1994) 121–137.
[11] M. Edidin, Lipid microdomains in cell surface membranes, Curr. Opin. Struct. Biol. 7 (1997)
528–532.
[12] F.R. Maxfield, Plasma membrane microdomains, Curr. Opin. Cell Biol. 14 (2002) 483–487.
[13] Z. Arsov, M. Schara, J. S
ˇ
trancar, Quantifying the lateral lipid domain properties in erythrocyte
ghost membranes using EPR-spectra decomposition, J. Magn. Reson. 157 (2002) 52–60.
[14] M. Ge, K.A. Field, R. Aneja, D. Holowka, B. Baird, J.H. Freed, Electron spin resonance
characterization of liquid ordered phase of detergent-resistant membranes from RBL-2H3 cells,
Biophys. J. 77 (1999) 925–933.
[15] D.A. Brown, E. London, Structure and function of sphingolipid- and cholesterol-rich mem-
brane rafts, J. Biol. Chem. 275 (2000) 17221–17224.
[16] G.J. Schu
¨
tz, G. Kada, V.P. Pastushenko, H. Schindler, Properties of lipid microdomains in a
muscle cell membrane visualized by single molecule microscopy, EMBO J. 19 (2000) 892–901.
[17] J. S
ˇ
trancar, M. Schara, S. Pec
ˇ
ar, New EPR method for cellular surface characterization,
J. Membr. Biol. 193 (2003) 15–22.
[18] F.J. Sharom, C.W.M. Grant, A model for ganglioside behaviour in cell membrane, Biochim.
Biophys. Acta 507 (1978) 280–293.
[19] M.W. Peters, K.R. Barber, C.W.M. Grant, Lateral distribution of gangliosides in bilayer mem-
branes: lipid and ionic effects, J. Neurosci. Res. 12 (1984) 343–353.
[20] L.A. Bagatolli, E. Gratton, G.D. Fidelio, Water dynamics in glycosphingolipid aggregates studied
by LAURDAN fluorescence, Biophys. J. 75 (1998) 331–341.
[21] E. Bertoli, M. Masserini, S. Sonnino, R. Ghidoni, B. Cestaro, G. Tettamanti, Electron par-
amagnetic resonance studies on the fluidity and surface dynamics of egg phospatidylcholine
vesicles containing gangliosides, Biochim. Biophys. Acta 467 (1981) 196–202.
[22] H. Beitinger, V. Vogel, D. Mo
¨
bius, H. Rahmann, Surface potentials and electric dipole moments
of ganglioside and phospholipid monolayer: contribution of the polar headgroup at the water/
lipid interface, Biochim. Biophys. Acta 984 (1989) 293–300.
[23] M. Shinitzky, Membrane fluidity and cellular functions, in: M. Shinitzky, (Ed.), Physiology of
Membrane Fluidity, Vol. 1, CRC Press, Boca Raton, 1984, pp. 1–51.
Application of Spin-Labeling EPR and ATR-FTIR Spectroscopies 161