[70] H.R. Hope, L.J. Pike, Phosphoinositides and phosphoinositide-utilizing enzymes in detergent-
insoluble lipid domains, Mol. Biol. Cell 7 (1996) 843–851.
[71] T. Laux, K. Fukami, M. Thelen, T. Golub, D. Frey, P. Caroni, GAP43, MARCKS, and CAP23
modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a
common mechanism, J. Cell Biol. 149 (2000) 1455–1472.
[72] J. van Rheenen, E. Mulugeta Achame, H. Janssen, J. Calafat, K. Jalink, PIP(2) signaling in lipid
domains: a critical re-evaluation, Embo J. 21 (2005) 21.
[73] E. Muller, H. Hegewald, K. Jaroszewicz, G.A. Cumme, H. Hoppe, H. Frunder, Turnover of
phosphomonoester groups and compartmentation of polyphosphoinositides in human eryth-
rocytes, Biochem. J. 235 (1986) 775–783.
[74] C.E. King, L.R. Stephens, P.T. Hawkins, G.R. Guy, R.H. Michell, Multiple metabolic pools of
phosphoinositides and phosphatidate in human erythrocytes incubated in a medium that permits
rapid transmembrane exchange of phosphate, Biochem. J. 244 (1987) 209–217.
[75] P. Gascard, E. Journet, J.C. Sulpice, F. Giraud, Functional heterogeneity of polyphosphoinosi-
tides in human erythrocytes, Biochem. J. 264 (1989) 547–553.
[76] P. Gascard, T. Pawelczyk, J.M. Lowenstein, C.M. Cohen, The role of inositol phospholipids in the
association of band 4.1 with the human erythrocyte membrane, Eur. J. Biochem. 211 (1993) 671–681.
[77] D. Pradhan, K. Tseng, C.D. Cianci, J.S. Morrow, Antibodies to betaISigma2 spectrin identify in-
homogeneities in the erythrocyte membrane skeleton, Blood Cells Mol. Dis. 32 (2004) 408–410.
[78] G.J. Bosman, F.L. Willekens, J.M. Werre, Erythrocyte aging: a more than superficial resemblance
to apoptosis? Cell. Physiol. Biochem. 16 (2005) 1–8.
[79] F.L. Willekens, J.M. Werre, J.K. Kruijt, B. Roerdinkholder-Stoelwinder, Y.A. Groenen-Dopp,
A.G. van den Bos, G.J. Bosman, T.J. van Berkel, Liver Kupffer cells rapidly remove red blood
cell-derived vesicles from the circulation by scavenger receptors, Blood 105 (2005) 2141–2145.
[80] F.L. Willekens, B. Roerdinkholder-Stoelwinder, Y.A. Groenen-Dopp, H.J. Bos, G.J. Bosman,
A.G. van den Bos, A.J. Verkleij, J.M. Werre, Hemoglobin loss from erythrocytes in vivo results
from spleen-facilitated vesiculation, Blood 101 (2003) 747–751.
[81] R. Reliene, M. Mariani, A. Zanella, W.H. Reinhart, M.L. Ribeiro, E.M. del Giudice, S. Perrotta,
A. Iolascon, S. Eber, H.U. Lutz, Splenectomy prolongs in vivo survival of erythrocytes differently
in spectrin/ankyrin- and band 3-deficient hereditary spherocytosis, Blood 100 (2002) 2208–2215.
[82] H.U. Lutz, S.C. Liu, J. Palek, Release of spectrin-free vesicles from human erythrocytes during
ATP depletion. I. Characterization of spectrin-free vesicles, J. Cell Biol. 73 (1977) 548–560.
[83] D. Allan, M.M. Billah, J.B. Finean, R.H. Michell, Release of diacylglycerol-enriched vesicles
from erythrocytes with increased intracellular (Ca2+), Nature 261 (1976) 58–60.
[84] D. Allan, P. Thomas, A.R. Limbrick, The isolation and characterization of 60 nm vesicles
(‘nanovesicles’) produced during ionophore A23187-induced budding of human erythrocytes,
Biochem. J. 188 (1980) 881–887.
[85] U. Salzer, P. Hinterdorfer, U. Hunger, C. Borken, R. Prohaska, Ca(++)-dependent vesicle
release from erythrocytes involves stomatin-specific lipid rafts, synexin (annexin VII), and sorcin,
Blood 99 (2002) 2569–2577.
[86] H. Hagerstrand, B. Isomaa, Vesiculation induced by amphiphiles in erythrocytes, Biochim.
Biophys. Acta 982 (1989) 179–186.
[87] M.P. Sheetz, S.J. Singer, Biological membranes as bilayer couples. A molecular mechanism of
drug-erythrocyte interactions, Proc. Natl. Acad. Sci. USA 71 (1974) 4457–4461.
[88] M.P. Sheetz, S.J. Singer, Equilibrium and kinetic effects of drugs on the shapes of human
erythrocytes, J. Cell Biol. 70 (1976) 247–251.
[89] A. Iglic, A possible mechanism determining the stability of spiculated red blood cells,
J. Biomech. 30 (1997) 35–40.
[90] H.W.G. Lim, M. Wortis, R. Mukhopadhyay, Stomatocyte-discocyte-echinocyte sequence of the
human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics,
Proc. Natl. Acad. Sci. USA 99 (2002) 16766–16769.
[91] R. Mukhopadhyay, H.W.G. Lim, M. Wortis, Echinocyte shapes: bending, stretching, and shear
determine spicule shape and spacing, Biophys. J. 82 (2002) 1756–1772.
Organization and Dynamics of Erythrocyte Lipid Rafts 79