D(ξ + η) = Dξ + Dη + 2(Eξη − EξEη).
ξ η
(ξ, η) = Eξη − EξEη = E(ξ − Eξ)(η − Eη).
ξ η
ρ(ξ, η) =
(ξ, η)
√
Dξ
√
Dη
.
ξ η
(ξ, η) = 0 ρ(ξ, η) = 0
D(ξ + η) = Dξ + Dη + 2 (ξ, η)
k ξ
Eξ
k
k
ξ E(ξ − Eξ)
k
k ξ E|ξ|
k
k ξ
E|ξ − Eξ|
k
k ξ
Eξ
[k]
= Eξ(ξ − 1) . . . (ξ − k + 1)
r q ≤ r
q
r > q