Файлы
Обратная связь
Для правообладателей
Найти
Коткин Г.Л., Сербо В.Г., Черных А.И. Лекции по аналитической механике
Файлы
Академическая и специальная литература
Физика
Механика
Назад
Скачать
Подождите немного. Документ загружается.
“
X
Y
Z
“
x
=
x
1
,
y
=
x
2
,
z
=
x
3
O
“
R
O
X
Y
Z
xy
z
X
Y
Z
O
r
a
R
Y
z
Z
X
y
x
m
a
X
Y
Z
“
xy
z
“
N
a
=
1
,
2
,
.
.
.
,
N
m
a
r
a
xy
z
R
+
r
a
.
x
a
,
y
a
,
z
a
r
a
xy
z
r
a
R
r
a
v
a
O
v
a
=
˙
R
≡
V
.
(45
.
1)
O
Ω
n
Ω
=
Ω
·
n
.
Ω
=
Ω
(
t
)
Ω
n
a
v
a
=
[
Ω
,
r
a
]
.
(45
.
2)
e
i
x
1
x
2
x
3
e
i
e
k
=
δ
ik
,
i,
k
=
1
,
2
,
3
.
r
a
r
a
=
x
a
e
1
+
y
a
e
2
+
z
a
e
3
.
( 4
5
.
3)
e
i
Ω
d
e
i
dt
=
[
Ω
,
e
i
]
.
(45
.
4)
x
a
,
y
a
,
z
a
r
a
A
=
A
(
t
)
A
=
A
1
e
1
+
A
2
e
2
+
A
3
e
3
(45
.
5)
A
1
,
A
2
,
A
3
d
A
dt
=
dA
1
dt
e
1
+
dA
2
dt
e
2
+
dA
3
dt
e
3
+
[
Ω
,
A
]
.
(45
.
6
a
)
e
i
d
A
dt
i
≡
e
i
·
d
A
dt
=
dA
i
dt
+
3
X
j,k
=1
e
ij
k
Ω
j
A
k
,
i
=
1
,
2
,
3
.
( 4
5
.
6
b
)
e
ij
k
a
v
a
=
V
+
[
Ω
,
r
a
]
.
(45
.
7)
xy
z
O
Ω
O
O
′
B
O
r
′
a
r
a
r
a
=
r
′
a
+
B
.
(45
.
8)
O
′
V
′
=
V
+
[
Ω
,
B
]
.
(45
.
9)
v
a
v
a
=
V
′
+
[
Ω
′
,
r
′
a
]
(45
.
10)
V
′
+
[
Ω
′
,
r
′
a
]
=
V
+
[
Ω
,
B
]
+
[
Ω
,
r
′
a
]
,
r
′
a
Ω
′
=
Ω
,
O
V
V
k
V
⊥
Ω
(
t
)
V
′
V
′
k
=
V
k
,
V
′
⊥
=
V
⊥
+
[
Ω
,
B
]
.
V
k
=
0
O
′
V
′
O
′
P
=
N
X
a
=1
m
a
v
a
.
(46
.
1
a
)
m
=
X
a
m
a
,
r
=
P
a
m
a
r
a
m
,
(46
.
2)
P
=
m
V
+
m
[
Ω
,
r
]
.
(46
.
1
b
)
xy
z
r
=
0
m
V
=
V
P
=
m
V
.
(46
.
3)
M
=
N
X
a
=1
m
a
[
R
+
r
a
,
V
+
[
Ω
,
r
a
]]
=
m
[
R
,
V
]+
+
X
a
m
a
[
r
a
,
[
Ω
,
r
a
]]
+
m
[
r
,
V
]
+
m
[
R
,
[
Ω
,
r
]]
.
(46
.
4)
xy
z
m
R
O
Ω
M
=
m
[
R
,
V
]
+
X
a
m
a
[
r
a
,
[
Ω
,
r
a
]]
.
(46
.
5)
O
M
=
X
a
m
a
[
r
a
,
[
Ω
,
r
a
]]
.
(46
.
6)
Ω
j
[
r
a
,
[
Ω
,
r
a
]]
=
Ω
r
2
a
−
(
Ω
r
a
)
r
a
,
x
1
x
2
x
3
[
r
a
,
[
Ω
,
r
a
]]
·
e
i
=
3
X
k
=1
r
2
a
δ
ik
−
(
r
a
)
i
(
r
a
)
k
Ω
k
,
M
i
=
3
X
k
=1
I
ik
Ω
k
,
(46
.
7)
I
ik
I
ik
=
N
X
a
=1
m
a
r
2
a
δ
ik
−
(
r
a
)
i
(
r
a
)
k
,
i,
k
=
1
,
2
,
3
.
(46
.
8)
I
ik
M
Ω
T
=
1
2
N
X
a
=1
m
a
v
2
a
.
T
=
1
2
m
V
2
+
1
2
X
a
m
a
[
Ω
,
r
a
]
2
+
m
Ω
[
r
,
V
]
.
xy
z
m
V
T
=
1
2
m
V
2
+
1
2
X
a
m
a
[
Ω
,
r
a
]
2
.
(46
.
9)
O
T
=
1
2
X
a
m
a
[
Ω
,
r
a
]
2
.
(46
.
10)
T
=
1
2
m
V
2
=
1
2
PV
.
(46
.
1
1)
T
=
1
2
MΩ
.
(46
.
12)
(
Ω
[
r
a
,
[
Ω
,
r
a
]])
=
[
Ω
,
r
a
]
2
.
Ω
j
T
=
1
2
3
X
i,k
=1
I
ik
Ω
i
Ω
k
,
(46
.
13)
I
ik
M
Ω
90
o
T
>
0
I
11
=
X
a
m
a
(
y
2
a
+
z
2
a
)
,
I
22
=
X
a
m
a
(
x
2
a
+
z
2
a
)
,
I
33
=
X
a
m
a
(
x
2
a
+
y
2
a
)
,
I
12
=
I
21
=
−
X
a
m
a
x
a
y
a
,
I
13
=
I
31
=
−
X
a
m
a
x
a
z
a
,
I
23
=
I
32
=
−
X
a
m
a
y
a
z
a
.
I
ik
I
11
+
I
22
=
X
a
m
a
(
x
a
+
y
2
a
+
2
z
2
a
)
≥
X
a
m
a
(
x
2
a
+
y
2
a
)
=
I
33
.
xy
I
11
+
I
22
=
I
33
.
n
ρ
a
a
n
I
n
=
X
a
m
a
ρ
2
a
.
I
11
I
22
I
33
‹
1
2
...
21
22
23
24
25
26
27
28
29
›