M
r ϕ
L = −mc
2
s
1 −
˙r
2
+ r
2
˙ϕ
2
c
2
+
α
r
.
p
r
=
∂L
∂ ˙r
=
m ˙r
p
1 − (v/c)
2
, p
ϕ
≡ M =
∂L
∂ ˙ϕ
=
mr
2
˙ϕ
p
1 − (v/c)
2
p
2
= p
2
r
+
M
2
r
2
,
p
r
(r) = ±
s
1
c
2
E +
α
r
2
−
M
2
r
2
− m
2
c
2
.
S
0
(r, ϕ) =
Z
p
ϕ
(ϕ) dϕ +
Z
p
r
(r) dr .
S(r, ϕ, E, M, t) = −E t + Mϕ +
Z
p
r
(r) dr ,
E M α
1,2
∂S/∂α
1
= β
1
∂S/∂E = const
r(t)
t =
1
c
2
Z
E +
α
r
dr
p
r
(r)
, (41.8)