
Φ(q, P, t) = qP + δτH(P, q, t) , (36.17)
ε ≡ δτ H(p, q, t)
p =
∂Φ
∂q
= P + δτ
∂H(P, q, t)
∂q
,
Q =
∂Φ
∂P
= q + δτ
∂H(P, q, t)
∂P
.
δτ
P (t) = p −δτ
∂H(p, q, t)
∂q
= p(t) + ˙pδτ = p(t + δτ ) ,
Q(t) = q + δτ
∂H(p, q, t)
∂p
= q( t) + ˙qδτ = q(t + δτ) .
Q(t) = q(t + δτ) , P (t) = p(t + δτ) (36.18)
δτ
H
′
(P, Q, t) = H(p, q, t) +
∂Φ
∂t
= H(p, q, t) + δτ
∂H(P, q, t)
∂t
≈
≈ H(p, q, t) + δτ
dH(p, q, t)
dt
= H(p, q, t + δτ)
δτ
Q(t) = q(t + τ ) , P (t) = p(t + τ) (36.19)