
O}nr'l ilada-n Darrrar Crralam Anahraia
ttv.l
rvruuErrr r VYYEr
\)yolgltr
nrrqryoro
t
P3
=
0.12
pu
Qor=
-
0'96
Pu
Power
residuals as
per Eq.
(6.61)
are
-
rt (calcu
(-
0.23)
=
0.73
Aror-
-1.5 -
(0.12)
=
-
!.62
tQT=
1
-
(-
o'e6)
-
t'e6
The changes
in variables at the end of the first iteration are obtained
as follows:
0P, 0P, 0P,
06, 061 alv2l
0P,
aP, 7Pu
06, 061,
0lv2l
aQ, }Qz aQ,
06, 06:'
'av|
Jacobian
elements can be evaluated
by differentiating the expressions
given
above
fr>r
Pr, Py
Qz
with respectto
6r,
d1
and
lVrl and substituting
the
given
and
assumed values at the start of
iteraticln. The chanses
in variables are
obtained
as
Load
Ftow
Studies
i zzr
ti^--i.
Sz=0.5+j1.00
|
-
Sr=-1.5-j0.15
Transmission
loss
=
0.031
Line
flows
The
The
the
real
part
of
line
flows
0.1913r2E00
0.839861E'00-l
0.0
0.6s4697
E00
|
-0.673847
E00
0.0
J
the
imaginary
part
of
line
flows
-0.5994&E00
_0.r9178zE00]
0.0
0.39604s800
I
-0.37sr6s800
0.0
I
Rectangular
Power-Mismatch
Version
This
version
uses
e,
ancl
.f
,the
rear
ancr
imaginary
parts
of
the
v.ltages
resllectivcly,
as
variables'
'fhe
number
of
equations
and
variables
is greater
than
thart
tirr
Eq.
(6.6r),
by
the
nurnber
<tt
pi
buses.
Since
at
pv
buses
e,and
.f;
can
vary
but
,,'
+.f,'
-
lviP,
a
voltage-magnitude
squarecl
misn-latch
equation
is
required
tbr
each
PV
bus.
with
sparsity
programming,
this
increase
in
order
is
of
hardly
any
significance.
Indeed
each
iteration
is
rnarginally
faster
than
for
Eq'
(6'67)
since
there
are
no
time-consunring
sine
ancl
cosine
terms.
It
nray,
however,
be
noted
that
even
the polar
version
avoids
these
as
far
as possible
9f
using
rectangular
arirhemetic
in
constructing
Eqs (6.64)
and (6.65).
However'
thc
rcct:tttgtrlltr
vcrsion
sccnls
to
bc
slighiiy
t.r,
rcliable
but
faster
in
convergence
than
the polar
version.
The
total
number
of
non-linear
power
flow
equations
considered
in
this
case
arc
fixed
iurd
cqual
2
(trl).
These
lbllow
fr.o'i
Eqs.
(6.26a)
and (6.26b)
and
are
following
matrix
shows
I
oo
I-0.r8422eE00
L-0.826213^800
following
matrix
shows
I
o.o
I
l|0.60s274800
L0.224742E00
Itdjll-24.4i
-t2.23
s.64-1-r[0.i3f
[-0.023-1
| ^r I | .^^^ ^^-l | -^l | ^^.-.1
I
Aai
l:l-
t/..25 /.4.e)
-J.u)l
|
-
t.ozl:l-u.uo)4
|
[nrv,r'-]
L-uu
3.0s
zz.s4)
L
r.qol
I
ooarl
la)l Iai-l l-^4 I t-0.1 [
002.3
I [
0023.1
I
a]
l:l
I
l*l
^4
l:lol*l-006s41:l-006s41
Itv,t'j L'y,roJ lnrv.,r'.1
L'i I
oosoJ
I
r.08eJ
We
can now calculate
fusing
Eq.
(6.28)]
Qtt
=
0.a671
Qo\= Q\
+
Qrt
=
0.4677
+
0.6
=
1.0677
which is
within limits.
If' the
sanre
problem
is solved using a digital
computer,
the
solution
converges
in
three iterations. The final results are
given
below:
Vz=
1.081
l-
0.024
rad
Vt
=
I.M l- 0.0655 rad
Qu
=
-
0.I5
+
0.6
=
0.45
(within
linrits)
Sr
=
1.031 *
j(-
0.791)
P,
(specifi"d)
-I{
e,(epG11,
-
f,B,t)
+
fihrG*
-t
epB,o}
:
0
k:l
i
=
l,
2,
...,
n
i
=
slack(s)
n
rt.
B;
(specifi"d)
-)
lf,koG,o
-
ftB,t1-
e;(.f*Gi*
*
eoB,oy]}
=
g
k=l
(6.68)
(lbr
each
PQ
bus)
(6.69)