Machine Reconstruction of Metabolic Networks from Metabolomic Data... 227
[9] Nilsson, N.: Probabilistic logic. Artificial Intelligence 28 (1986) 71–87
[10] Wellman, M. Breese, J.S., Goldman, R.P.: From knowledge bases to decision models.
Knowledge Engineering Review 7 (1992)
[11] Getoor, L., Friedman, N., Koller, D., Taskar, B.: Learning probabilisticmodels of link
structure. Journal of Machine Learning Research 3 (2002) 679–707
[12] Natarajan, S., Tadepalli, P., Altendorf, E., Dietterich, T.G., Fern, A., Restificar, A.C.:
Learning first-order probabilistic models with combining rules. In: ICML. (2005)
609–616
[13] Neville, J., Jensen, D.: Dependency networks for relational data. In: Proc. 4th IEEE
Int’l Conf. on Data Mining, IEEE Computer Society Press. (2004) 170–177
[14] Jaeger, M.: Parameter learning for relational bayesian networks. In: ICML. (2007)
369–376
[15] Sato, T., Kameya, Y.: Prism: A symbolic-statistical modeling language. In: Proceed-
ings of the FifteenthInternationalJointConference on Artificial Intelligence , Nagoya,
Japan: Morgan Kaufmann (1997) 1330–1335
[16] Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15 (2001) 391–454
[17] Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: In Leon Sterling, editor, Proc. Twelfth International Conference on Logic
Programming,MIT Press. (1995) 715–729
[18] N., A., S.H., M.: Machine learning metabolic pathway descriptions using a proba-
bilistic relational representation. Electronic Transactions in Artificial Intelligence 6
(2002)
[19] Muggleton, S.: Stochastic logic programs. In: In L. De Raedt (Ed.), Advances in
inductive logic programming. IOS Press, Amsterdam (1996)
[20] Koyuturk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting
frequent subgraphs in biological networks. In: Bioinformatics, Suppl. 1: Proc. 12th
Intl. Conf. Intelligent Systems for Molecular Biology (ISMB’04). (2004) 200–207
[21] You, C., Holder, L., Cook, J.: Application of graph-based data mining to metabolic
pathways. In: Workshop on Data Mining in Bioinformatics, ICDM,. (2006)
[22] Hoffmann, R., Krallinger, M., Andres, E., Tamames, J., Blaschke, C., Valencia, A.:
Text mining for metabolic pathways, signaling cascades, and protein networks. Sci
STKE 283 21 (2005)
[23] Le Novre, N., Shimizu, T.S.: Stochsim: modelling of stochastic biomolecular pro-
cesses. Bioinformatics 17 (2001) 575–576