146 Chapter 4
0 0.0330 0 0 0.1043 0 0 0.2806 0
0 0 0.0335 0 0 0.1184 0 0 0.3043
H(20) H(30) H(32)
0.5500 0 0 0.8408 0 0 0.8658 0 0
0 0.5207 0 0 0.8372 0 0 0.8728 0
0 0 0.6228 0 0 0.8421 0 0 0.9028
We know that these elements represent the probability to leave the state i in a
period less than or equal to the period t, and so have sense only in the main
diagonal of each submatrix.
The next matrix
D,whose elements represent the probability of remaining in the
state for t periods, is given by
() ()tt
−DIH. (4.10)
We get:
Matrix
D
D(1) D(5) D(10)
0.9555 0 0 0.8328 0 0 0.7184 0 0
0 0.9670 0 0 0.8957 0 0 0.7194 0
0 0 0.9665 0 0 0.8816 0 0 0.6957
D(20) D(30) D(32)
0.4500 0 0 0.1592 0 0 0.1342 0 0
0 0.4793 0 0 0.1628 0 0 0.1272 0
0 0 0.3772 0 0 0.1579 0 0 0.0972
The matrix we look for, that is
Φ , is the solution of the evolution equation of the
DTHSMP.
Here, ( )
ij
t
represents the probability that a taxicab driver being at time 0 in
zone i will be after t periods, in the state j.
From the results given below, any row of the submatrix ( )t
Φ is indeed a
probability distribution.
The results are:
Matrix
Φ
Φ (1) Φ (5) Φ (10)
0.9790 0.0158 0.0052 0.9228 0.0530 0.0242 0.8553 0.1065 0.0382
0.0060 0.9939 0.0001 0.0437 0.9465 0.0098 0.0916 0.8767 0.0317
0.0091 0.0017 0.9892 0.0264 0.0154 0.9582 0.0582 0.0288 0.9130
Φ (20) Φ (30) Φ (32)
0.6973 0.2320 0.0707 0.5337 0.3490 0.1173 0.5132 0.3587 0.1281
0.1767 0.7548 0.0685 0.2745 0.6116 0.1139 0.2902 0.5882 0.1216
0.1220 0.0686 0.8094 0.2039 0.1278 0.6683 0.2196 0.1386 0.6418
Matrix
H
H(1) H(5) H(10)
0.0445 0 0 0.1672 0 0 0.2816 0 0