Quantum Dot Infrared Photodetectors by Metal-Organic Chemical Vapour Deposition 657
within a certain range [41] . In reality, however, due to the strain, the quality of stacks
might degrade with the increase in stacks, which would limit the success of this approach.
● An external scheme may also used to improve the device performance. Resonant cavity
enhanced (RCE) detectors have been successfully used in near-infrared telecommunica-
tions. The internal quantum effi ciency of QDIPs may also be enhanced by RCE structure.
This may be realized by placing a pair of distributed Bragg refl ectors (DBR). One limit to
this approach is that it requires the growth of many quarter wavelength layers in order
to achieve the desired refl ectivity. Such growth will be tedious and more and more diffi -
cult with the increase in the wavelength. An alternative is to make the DBR with higher
index contrast material, for example with dielectric materials. This will have to be done
after the growth and may require the removal of the substrate. The normal trade-off of
the DBR scheme is a reduction in the bandwidth of the photoresponse. However, a QDIP
has a natural narrow bandpass detection scheme that is compatible with resonant cavity
technology.
● Besides the improvement of QDIP itself, the QDIP FPA requires extra consideration such as
the matching of the device operation parameters with characteristics of the ROIC.
References
1. K. Mukai and M. Sugawara, Semiconductor and Semimentals. Volume 60, Chapter 5 (Acadamic
Press, San Diego, 1999).
2. Y. Arakawa and H. Sakaki , Appl. Phys. Lett. 40 , 939 ( 1982 ) .
3. M. Asada , Y. Miyamoto , and Y. Suematsu , IEEE. J. Quantum Electron . QE-22 , 1887 ( 1986 ) .
4. A. Piotrowski , P. Madejczyk , W. Gawron , K. Klos , J. Pawluczyk , M. Grudzien , J. Piotrowski , and
A. Rogalski , Proc. of SPIE 5732 , 273 ( 2005 ) .
5. B.F. Levine , J. Appl. Phys. 74 , R1 – R81 ( 1993 ) .
6. V. Ryzhii , Semicond. Sci. Technol. 11 , 759 – 765 ( 1996 ) .
7. L. Goldstein , F. Glas , J. Marzin , M. Charasse , and G. LeRoux , Appl. Phys. Lett. 47 , 1099 ( 1985 ) .
8. D. Gershoni , H. Temkin , G.J. Dolan , J. Dunsmuir , S.N.G. Chu , and M.B. Panish , Appl. Phys. Lett.
53 , 995 ( 1998 ) .
9. S. Gangopadhyay and B.R. Nag , Nanotechnology 8 , 14 ( 1997 ) .
10. M. Califano and P. Harrison , Phys. Rev. B 6 1 , 10959 ( 2000 ) .
11. E.P. Pokatilov , V.A. Fonoberov , V.M. Fomin , and J.T. Devreese , Phys. Rev. B 64 , 245328 ( 2001 ) .
12. J. Williamson , L. Wang , and A. Zunger , Phys. Rev. B 62 , 12963 ( 2000 ) .
13. E. Rosencher and B. Vinter . Optoelectronics , ( Cambridge University Press , Cambridge , 2002 ) .
14. K.K. Choi , Appl. Phys. Lett. 65 , 1268 ( 1994 ) .
15. Z. Ye , J.C. Campbell , Z. Chen , E.-T. Kim , and A. Madhukar , Appl. Phys. Lett. 83 , 1234 ( 2003 ) .
16. W.A. Beck , Appl. Phys. Lett. 63 , 3589 ( 1993 ) .
17. B.F. Levine , A. Zusman , S.D. Gunapala , M.T. Asom , J.M. Kuo , and W.S.J. Hobson , Appl Phys. 7 2 ,
4429 ( 1992 ) .
18. V. Ryzhii , Jap J. Appl. Phys. 4 0 , L148 ( 2001 ) .
19. V. Ryzhii , I. Khmyrova , and V. Mitrin , Semic. Science and Technology 19 , 8 ( 2004 ) .
20. Z.M. Ye , J.C. Campbell , Z.H. Chen , E.T. Kim , and A. Madhukar Noise and photoconductive gain in
InAs quantum-dot infrared photodetectors , Appl. Phys. Lett. 83 , 1234 ( 2003 ) .
21. W. Zhang , H. Lim , M. Taguchi , S. Tsao , B. Movaghar , and M. Razegh i , Appl. Phys. Lett. 8 6 ,
191103 ( 2005 ) .
22. J. Phillips ,
J. Appl. Phys. 9 1 , 4590 ( 2002 ) .
23. Y.M. Qiu and D. Uhl , J. Cryst. Growth 257 , 225 ( 2003 ) .
24. E.T. Kim , A. Madhukar , Z. Ye , and J.C. Campbell , Appl. Phys. Lett. 84 , 3277 ( 2004 ) .
25. D. Pan , E. Towe , and S. Kennerly , Appl. Phys. Lett. 73 , 1937 ( 1998 ) .
26. D. Gershoni , H. Temkin , G.J. Dolan , J. Duinsmuir , S.N.G. Chu , and M.B. Panish , Appl. Phys. Lett.
53 , 995 ( 1988 ) .
27. M.A. Cusack , P.R. Briddon , and M. Jaros , Phys. Rev. B 54 , R2300 ( 1996 ) .
28. R. People , J. Appl. Phys. 62 , 2551 ( 1987 ) .
CH021-I046325.indd 657CH021-I046325.indd 657 6/27/2008 5:48:30 PM6/27/2008 5:48:30 PM