CONTINUED No. 221 Pm
¯
3m
Generators selected (1); t(1, 0,0); t(0,1,0); t(0,0,1); (2); (3); (5); (13); (25)
Positions
Multiplicity,
Wyckoff letter,
Site symmetry
Coordinates Reflection conditions
h,k,l permutable
General:
48 n 1(1)x,y, z (2) ¯x, ¯y,z (3) ¯x,y, ¯z (4) x, ¯y, ¯z
(5) z,x,y (6) z, ¯x, ¯y (7) ¯z, ¯x,y (8) ¯z,x, ¯y
(9) y,z,x (10) ¯y,z, ¯x (11) y, ¯z, ¯x (12) ¯y, ¯z,x
(13) y,x , ¯z
(14) ¯y, ¯x, ¯z (15) y, ¯x, z (16) ¯y,x,z
(17) x,z, ¯y (18) ¯x,z,y (19) ¯x, ¯z, ¯y (20) x , ¯z,y
(21) z,y, ¯x (22) z, ¯y,x (23) ¯z,y,x (24) ¯z, ¯y, ¯x
(25) ¯x, ¯y, ¯z (26) x,y, ¯z (27) x, ¯y,z (28) ¯x
,y,z
(29) ¯z, ¯x, ¯y (30) ¯z, x,y (31) z,x, ¯y (32) z, ¯x,y
(33) ¯y, ¯z, ¯x (34) y, ¯z, x (35) ¯y,z,x (36) y,z, ¯x
(37) ¯y, ¯x,z (38) y, x,z (39) ¯y,x, ¯z (40) y, ¯x, ¯z
(41) ¯x, ¯z,y (42) x, ¯z,
¯y (43) x,z,y (44) ¯x,z, ¯y
(45) ¯z, ¯y,x (46) ¯z,y, ¯x (47) z, ¯y, ¯x (48) z,y, x
no conditions
Special: no extra conditions
24 m ..mx,x,z ¯x, ¯x, z ¯x,x, ¯zx, ¯x, ¯zz,x,xz, ¯x, ¯x
¯z, ¯x, x ¯z,x, ¯xx,z, x
¯x,z, ¯xx, ¯z, ¯x ¯x, ¯z,x
x,x, ¯z ¯x, ¯x, ¯zx, ¯x,z ¯x,x,zx,z, ¯x ¯x,z,x
¯x, ¯z, ¯xx, ¯z, xz,x, ¯xz, ¯x, x ¯z,x, x ¯z, ¯x, ¯x
24 lm..
1
2
,y,z
1
2
, ¯y, z
1
2
,y, ¯z
1
2
, ¯y, ¯zz,
1
2
,yz,
1
2
, ¯y
¯z,
1
2
,y ¯z,
1
2
, ¯yy,z,
1
2
¯y,z,
1
2
y, ¯z,
1
2
¯y, ¯z,
1
2
y,
1
2
, ¯z ¯y,
1
2
, ¯zy,
1
2
,z ¯y,
1
2
,z
1
2
,z, ¯y
1
2
,z,y
1
2
, ¯z, ¯y
1
2
, ¯z,yz,y,
1
2
z, ¯y,
1
2
¯z,y,
1
2
¯z, ¯y,
1
2
24 km.. 0,y,z 0, ¯y,z 0,y, ¯z 0, ¯y, ¯zz,0,yz,0, ¯y
¯z,0,y ¯z, 0, ¯yy,z,0¯y,z,0 y, ¯z,0¯y, ¯z,0
y, 0, ¯z ¯y,0, ¯zy,0,z ¯y,0,z 0,z, ¯y 0,
z,y
0, ¯z, ¯y 0, ¯z,yz, y,0 z, ¯y,0¯z,y,0¯z, ¯y,0
12 jm. m2
1
2
,y,y
1
2
, ¯y, y
1
2
,y, ¯y
1
2
, ¯y, ¯yy,
1
2
,yy,
1
2
, ¯y
¯y,
1
2
,y ¯y,
1
2
, ¯yy,y,
1
2
¯y,y,
1
2
y, ¯y,
1
2
¯y, ¯y,
1
2
12 im. m20, y,y 0, ¯y, y 0,y, ¯y 0, ¯y, ¯yy,0,yy, 0, ¯y
¯y,0, y ¯y,0, ¯yy,y, 0¯y,y, 0 y, ¯y,0¯y, ¯y,0
12 hmm2.. x,
1
2
,0¯x,
1
2
,00, x,
1
2
0, ¯x,
1
2
1
2
,0, x
1
2
,0, ¯x
1
2
,x,0
1
2
, ¯x, 0 x,0,
1
2
¯x,0,
1
2
0,
1
2
, ¯x 0,
1
2
,x
8 g . 3 mx, x,x ¯x, ¯x,x ¯x,x, ¯xx, ¯x, ¯x
x,x, ¯x ¯x, ¯x, ¯xx, ¯x,x ¯x,x,x
6 f 4 m . mx,
1
2
,
1
2
¯x,
1
2
,
1
2
1
2
,x,
1
2
1
2
, ¯x,
1
2
1
2
,
1
2
,x
1
2
,
1
2
, ¯x
6 e 4 m .mx, 0,0¯x,0,00,x , 00, ¯x,00, 0,x 0,0, ¯x
3 d 4/mm.m
1
2
,0, 00,
1
2
,00, 0,
1
2
3 c 4/mm.m 0,
1
2
,
1
2
1
2
,0,
1
2
1
2
,
1
2
,0
1 bm
¯
3 m
1
2
,
1
2
,
1
2
1 am
¯
3 m 0, 0,0
Symmetry of special projections
Along [001] p4mm
a
= ab
= b
Origin at 0,0,z
Along [111] p6mm
a
=
1
3
(2a − b− c) b
=
1
3
(−a + 2b − c)
Origin at x,x , x
Along [110] p2mm
a
=
1
2
(−a + b) b
= c
Origin at x,x , 0
673