CONTINUED No. 216 F
¯
43m
Symmetry operations
For (0,0,0)+ set
(1) 1 (2) 2 0 ,0,z (3) 2 0,y,0(4)2x,0,0
(5) 3
+
x,x,x (6) 3
+
¯x,x, ¯x (7) 3
+
x, ¯x, ¯x (8) 3
+
¯x, ¯x,x
(9) 3
−
x,x,x (10) 3
−
x, ¯x, ¯x (11) 3
−
¯x, ¯x,x (12) 3
−
¯x,x, ¯x
(13) mx,x,z (14) mx, ¯x,z (15)
¯
4
+
0,0,z;0,0,0 (16)
¯
4
−
0,0,z;0,0,0
(17) mx,y,y (18)
¯
4
+
x,0,0; 0,0,0 (19)
¯
4
−
x,0,0; 0,0,0 (20) mx,y, ¯y
(21) mx,y,x (22)
¯
4
−
0,y,0; 0,0,0 (23) m ¯x,y,x (24)
¯
4
+
0,y,0; 0,0,0
For (0,
1
2
,
1
2
)+ set
(1) t(0,
1
2
,
1
2
) (2) 2(0,0,
1
2
) 0,
1
4
,z (3) 2(0,
1
2
,0) 0,y,
1
4
(4) 2 x,
1
4
,
1
4
(5) 3
+
(
1
3
,
1
3
,
1
3
) x−
1
3
,x−
1
6
,x (6) 3
+
¯x,x+
1
2
, ¯x (7) 3
+
(−
1
3
,
1
3
,
1
3
) x+
1
3
, ¯x−
1
6
, ¯x (8) 3
+
¯x, ¯x+
1
2
,x
(9) 3
−
(
1
3
,
1
3
,
1
3
) x−
1
6
,x+
1
6
,x (10) 3
−
(−
1
3
,
1
3
,
1
3
) x+
1
6
, ¯x+
1
6
, ¯x (11) 3
−
¯x+
1
2
, ¯x+
1
2
,x (12) 3
−
¯x−
1
2
,x+
1
2
, ¯x
(13) g(
1
4
,
1
4
,
1
2
) x−
1
4
,x,z (14) g(−
1
4
,
1
4
,
1
2
) x+
1
4
, ¯x,z (15)
¯
4
+
1
4
,
1
4
,z;
1
4
,
1
4
,
1
4
(16)
¯
4
−
−
1
4
,
1
4
,z; −
1
4
,
1
4
,
1
4
(17) g(0,
1
2
,
1
2
) x,y,y (18)
¯
4
+
x,
1
2
,0; 0,
1
2
,0 (19)
¯
4
−
x,0,
1
2
;0,0,
1
2
(20) mx,y+
1
2
, ¯y
(21) g(
1
4
,
1
2
,
1
4
) x−
1
4
,y,x (22)
¯
4
−
1
4
,y,
1
4
;
1
4
,
1
4
,
1
4
(23) g(−
1
4
,
1
2
,
1
4
) ¯x+
1
4
,y,x (24)
¯
4
+
−
1
4
,y,
1
4
; −
1
4
,
1
4
,
1
4
For (
1
2
,0,
1
2
)+ set
(1) t(
1
2
,0,
1
2
) (2) 2(0,0,
1
2
)
1
4
,0,z (3) 2
1
4
,y,
1
4
(4) 2(
1
2
,0,0) x,0,
1
4
(5) 3
+
(
1
3
,
1
3
,
1
3
) x+
1
6
,x−
1
6
,x (6) 3
+
(
1
3
,−
1
3
,
1
3
) ¯x+
1
6
,x+
1
6
, ¯x (7) 3
+
x+
1
2
, ¯x−
1
2
, ¯x (8) 3
+
¯x+
1
2
, ¯x+
1
2
,x
(9) 3
−
(
1
3
,
1
3
,
1
3
) x−
1
6
,x−
1
3
,x (10) 3
−
x+
1
2
, ¯x, ¯x (11) 3
−
¯x+
1
2
, ¯x,x (12) 3
−
(
1
3
,−
1
3
,
1
3
) ¯x−
1
6
,x+
1
3
, ¯x
(13) g(
1
4
,
1
4
,
1
2
) x+
1
4
,x,z (14) g(
1
4
,−
1
4
,
1
2
) x+
1
4
, ¯x,z (15)
¯
4
+
1
4
,−
1
4
,z;
1
4
,−
1
4
,
1
4
(16)
¯
4
−
1
4
,
1
4
,z;
1
4
,
1
4
,
1
4
(17) g(
1
2
,
1
4
,
1
4
) x,y−
1
4
,y (18)
¯
4
+
x,
1
4
,
1
4
;
1
4
,
1
4
,
1
4
(19)
¯
4
−
x,−
1
4
,
1
4
;
1
4
,−
1
4
,
1
4
(20) g(
1
2
,−
1
4
,
1
4
) x,y+
1
4
, ¯y
(21) g(
1
2
,0,
1
2
) x,y,x (22)
¯
4
−
1
2
,y,0;
1
2
,0,0 (23) m ¯x+
1
2
,y,x (24)
¯
4
+
0,y,
1
2
;0,0,
1
2
For (
1
2
,
1
2
,0)+ set
(1) t(
1
2
,
1
2
,0) (2) 2
1
4
,
1
4
,z (3) 2(0,
1
2
,0)
1
4
,y,0(4)2(
1
2
,0,0) x,
1
4
,0
(5) 3
+
(
1
3
,
1
3
,
1
3
) x+
1
6
,x+
1
3
,x (6) 3
+
¯x+
1
2
,x, ¯x (7) 3
+
x+
1
2
, ¯x, ¯x (8) 3
+
(
1
3
,
1
3
,−
1
3
) ¯x+
1
6
, ¯x+
1
3
,x
(9) 3
−
(
1
3
,
1
3
,
1
3
) x+
1
3
,x+
1
6
,x (10) 3
−
x, ¯x+
1
2
, ¯x (11) 3
−
(
1
3
,
1
3
,−
1
3
) ¯x+
1
3
, ¯x+
1
6
,x (12) 3
−
¯x,x+
1
2
, ¯x
(13) g(
1
2
,
1
2
,0) x,x,z (14) mx+
1
2
, ¯x,z (15)
¯
4
+
1
2
,0,z;
1
2
,0,0 (16)
¯
4
−
0,
1
2
,z;0,
1
2
,0
(17) g(
1
2
,
1
4
,
1
4
) x,y+
1
4
,y (18)
¯
4
+
x,
1
4
,−
1
4
;
1
4
,
1
4
,−
1
4
(19)
¯
4
−
x,
1
4
,
1
4
;
1
4
,
1
4
,
1
4
(20) g(
1
2
,
1
4
,−
1
4
) x,y+
1
4
, ¯y
(21) g(
1
4
,
1
2
,
1
4
) x+
1
4
,y,x (22)
¯
4
−
1
4
,y,−
1
4
;
1
4
,
1
4
,−
1
4
(23) g(
1
4
,
1
2
,−
1
4
) ¯x+
1
4
,y,x (24)
¯
4
+
1
4
,y,
1
4
;
1
4
,
1
4
,
1
4
Generators selected (1); t(1, 0,0); t(0,1,0); t(0,0,1); t(0,
1
2
,
1
2
); t(
1
2
,0,
1
2
); (2); (3); (5); (13)
Positions
Multiplicity,
Wyckoff letter,
Site symmetry
Coordinates
(0,0, 0)+ (0,
1
2
,
1
2
)+ (
1
2
,0,
1
2
)+ (
1
2
,
1
2
,0)+
Reflection conditions
h,k,l permutable
General:
96 i 1(1)x, y,z (2) ¯x, ¯y,z (3) ¯x,y, ¯z (4) x, ¯y, ¯z
(5) z,x,y (6) z, ¯x, ¯y (7) ¯z, ¯x,y (8) ¯z,x, ¯y
(9) y,z,x (10) ¯y,z, ¯x (11) y, ¯z, ¯x (12) ¯y, ¯z,x
(13) y,
x,z (14) ¯y, ¯x,z (15) y, ¯x, ¯z (16) ¯y,x, ¯z
(17) x,z,y (18) ¯x, z, ¯y (19) ¯x, ¯z, y (20) x, ¯z, ¯y
(21) z,y, x (22) z, ¯y, ¯x (23) ¯z, y, ¯x (24) ¯z, ¯y,x
hkl : h + k,h + l,k + l = 2n
0kl : k
,l = 2n
hhl : h + l = 2n
h00 : h = 2n
Special: no extra conditions
48 h ..mx, x,z ¯x, ¯x,z ¯x,x, ¯zx, ¯x, ¯zz,x,xz, ¯x, ¯x
¯z, ¯x, x ¯z,x, ¯xx,z,x ¯x,z, ¯xx, ¯z, ¯x ¯x, ¯z,x
24 g 2 . mm x
,
1
4
,
1
4
¯x,
3
4
,
1
4
1
4
,x,
1
4
1
4
, ¯x,
3
4
1
4
,
1
4
,x
3
4
,
1
4
, ¯x
24 f 2 . mm x, 0,0¯x, 0,00, x,00, ¯x,00,0,x 0,0, ¯x
16 e . 3 mx, x,x ¯x, ¯x,x ¯x,x, ¯xx, ¯x, ¯x
4 d
¯
43m
3
4
,
3
4
,
3
4
4 c
¯
43m
1
4
,
1
4
,
1
4
4 b
¯
43m
1
2
,
1
2
,
1
2
4 a
¯
43m 0,0,0
659