NonlinearBook10pt November 20, 2007
934 BIBLIOGRAPHY
[425] M. A. L. Thathachar and M. D. Srinath, “Some Aspects of the Lu r´e
Problem,” IEE E Trans. Autom. Control, vol. 12, p p. 451–453, 1967.
[426] M. A. L. Thathachar and M. D. S rinath, “Stability of L inear Time-
Invariant Systems,” IEEE Trans. Autom. Control, vol. 12, pp. 335–
336, 1967.
[427] M. A. L. Thathachar, M. D. Srinath, and G. Krishna, “Stability
Analysis of Nonlinearity in a Sector,” IEEE Trans. Autom. Control,
vol. 11, p p. 311–312, 1966.
[428] M. A. L. Thathachar, M. D. Srinath, and H. K. Ramaprige, “On
a Modified Lur´e Problem,” IEE E Trans. Autom. Control, vol. 12,
pp. 731–740, 1967.
[429] F. E. T hau, “Optimum Nonlinear Control of a Class of Randomly
Excited Systems,” ASME J. Dyn. Syst. Meas. Control, pp. 41–44,
1971.
[430] J. S. Thorp and B. R. Barmish, “On Guaranteed Stability of Uncertain
Linear Systems via Linear Control,” J. Optim. Theory Appl., vol. 35,
pp. 559–579, 1981.
[431] E. Torricelli, O pera Geometrica. Florence, Italy: Musse, 1644.
[432] J. Tsinias, “Stabilizability of Discrete-Time Nonlinear Systems,” IMA
J. Math. Control Info., vol. 6, pp. 135–150, 1989.
[433] J. Tsinias, “Sufficient Lyapunov-like Conditions for Stabilization,”
Math. Control, Signals, Syst., vol. 2, pp. 343–357, 1989.
[434] J. Tsinias, “Existence of Control Lyapunov Functions and Ap plica-
tions to State Feedback Stabilizability of Nonlinear Systems,” SIAM
J. Control Optim., vol. 29, pp. 457–473, 1991.
[435] F. Tyan and D. S. Bernstein, “Shifted Quadratic Guaranteed Cost
Bounds for Robust Controller Synthesis,” in Proc. 13th IFAC World
Congress, San Francisco, CA, pp. 5002–5007, 1996.
[436] F. Tyan, S. R. Hall, and D. S. Bernstein, “A Double-Commutator
Guaranteed Cost Bound for Robust Stability and Perf ormance,” Syst.
Control Lett., vol. 25, pp. 125–129, 1995.
[437] P. P. Vaidyanathan, “The Discrete-Time Bounded-Real Lemma in
Digital Filtering,” IEE E Trans. Circ. Syst., vol. 32, pp. 918–924, 1985.
[438] A. J. van der Schaft, “A State-Space Approach to Nonlinear H
∞
Control,” Syst. Control Lett., vol. 16, pp. 1–8, 1991.