NonlinearBook10pt November 20, 2007
914 BIBLIOGRAPHY
[164] W. M. Haddad, V. C hellaboina, and J. L. Fausz, “Robust Nonlinear
Feedback Control for Un certain Linear Systems with Nonquadratic
Performance Criteria,” Syst. Control Lett., vol. 33, pp. 327–338, 1998.
[165] W. M. Haddad, V. Chellaboina, J. L. Fausz, and C. T. Abdallah,
“Optimal Discrete-Time Control for Nonlinear Cascade Systems,” J.
Franklin Inst., vol. 335B, pp. 827–839, 1998.
[166] W. M. Haddad, V. Chellaboina, J. L. Fausz, and A. Leonessa, “Opti-
mal Nonlinear Robust Control for Nonlinear Uncertain Systems,” Int.
J. Control, vol. 73, pp. 329–342, 2000.
[167] W. M. Haddad, V. Ch ellaboina, and S. G. Nersesov, Thermodynamics:
A Dynamical Systems Approach. Princeton, NJ: Princeton Univ.
Press, 2005.
[168] W. M. Haddad, V. Chellaboina, and W. Wu, “Optimal Nonlinear-
Nonquadratic Feedback Control for Nonlinear Discrete-Time Systems
with ℓ
2
and ℓ
∞
Disturbances,” Nonlinear Anal. Theory, Methods
Appl., vol. 41, pp. 287–312, 2000.
[169] W. M. Haddad, J. L. Fausz, V. Chellaboina, and C. T. Abdallah,
“A Unifi cation Between Nonlinear-Nonquadratic Optimal Control and
Integrator Backstepping,” Int. J. Robust Nonlinear Control, vol. 8,
pp. 879–906, 1998.
[170] W. M. Hadd ad, J. P. How, S. R. Hall, and D. S. Bernstein, “Extensions
of Mixed-µ Bounds to Monotonic and Odd Monotonic Nonlinearities
Using Absolute Stability Theory: Part I,” in Proc. IEEE Conf. Dec.
Control, Tucson, AZ, pp. 2813–2819, 1992.
[171] W. M. Hadd ad, J. P. How, S. R. Hall, and D. S. Bernstein, “Extensions
of Mixed-µ Bounds to Monotonic and Odd Monotonic Nonlinearities
Using Absolute Stability Theory: Part II,” in Proc. IEEE Conf. Dec.
Control, Tucson, AZ, pp. 2820–2823, 1992.
[172] W. M. Hadd ad, J. P. How, S. R. Hall, and D. S. Bernstein, “Extensions
of Mixed-µ Bounds to Monotonic and Odd Monotonic Nonlinearities
Using Absolute Stability Theory,” Int. J. Control, vol. 60, pp. 905–951,
1994.
[173] W. M. Haddad, H.-H. Huang, and D. S. Bernstein, “Robust Stability
and Performance via Fixed-Order Dynamic Compensation: The
Discrete-Time Case,” IEEE Trans. Autom. Control, vol. 38, pp. 776–
782, 1993.