NonlinearBook10pt November 20, 2007
924 BIBLIOGRAPHY
[292] A. I. Lur´e and V. N. Postnikov, “On the T heory of Stability of Control
Systems,” P rikl. Mat. Mehk., vol. 8, 1944.
[293] A. M. Lyapunov, The General Problem of the Stability of Motion.
Kharkov, Russia: Kharkov Mathematical Society, 1892.
[294] A. M. Lyapunov, ““Probl`eme Generale de la Stabilit´e du Mouvement,”
in Annales de la Facult´e Sciences de l’Universit´e de Toulouse (
´
E.
Davaux, ed.),” vol. 9, pp. 203–474. 1907. Reprinted by P rinceton
University Press, Princeton, NJ, 1949.
[295] A. M. Lyapunov, The General Problem of Stability of Motion (A. T.
Fuller, trans. and ed.). Washington, DC: Taylor and Francis, 1992.
[296] E. F. Mageirou and Y. C. Ho, “Decentralized Stabilization via Game
Theoretic Methods,” Automatica, vol. 13, pp. 888–896, 1977.
[297] I. G. Malkin, “On the Theory of Stability of Control of Systems,”
Prikl. Mat. Mekh., vol. 15, 1951.
[298] I. G. Malkin, “On a Question of Reversib ility of Liapunov’s Theorem
on Asymptotic Stability,” Prikl. Mat. Mekh., vol. 18, pp. 129–138,
1954. English translation found in Nonlinear Systems: Stability
Analysis, pp. 161–170. (J. K. Agarwal and M. Vidyasagar, eds.), New
York: Dowden, Hutchinson and Ross, 1977.
[299] J. Malmborg, B. Bernhardsson, and K. J. Astrom, “A Stabilizing
Switching Scheme for Multi Controller S ystems,” in Proc. 13th IFAC
World Congress, San Francisco, CA, pp. 229–234, 1996.
[300] J. M. Martin and B. A. Hewer, “Smallest Destabilizing Perturbations
for Linear Systems,” Int. J. Control, vol. 45, pp. 1495–1504, 1987.
[301] B. M. Maschke, R. Ortega, and A. J. van der Schaft, “En ergy-
Based Lyapunov Functions for Forced Hamiltonian Systems with
Dissipation,” in Proc. IEEE Conf. Dec. Control, Tampa, FL, pp. 3599–
3604, 1998.
[302] B. M. Maschke, R. Ortega, A. J. van der Schaft, and G. Escobar,
“An Energy-Based Derivation of Lyapunov Functions for Forced
Systems with Application to Stabilizing Control,” in Proc. IFAC
World Congress, vol. E, pp. 409–414, 1999.
[303] B. M. Maschke and A. J. van der Schaft, “Port-Controlled Hamiltonian
Systems: Modelling Origins and System-Theoretic Properties,” in
Proc. 2nd IFAC NOLCOS, Bordeaux, France, pp. 282–288, 1992.