t
θ θc(t) c(0) = c
(0) = 0 c
(t),c
(t) > 0
θ > 0 θ>θ θ π
(t, w) t w
0
θ
θ
t − w → max
w − θc(t) ≥ 0.
t − θc(t) → max w = θc(t)
t
FB
=(c
)
−1
(1/θ) w
FB
= θc(t
FB
)
π(t − w)+(1− π)(t − w) → max
w − θc(t) ≥ 0,
w − θc(t) ≥ 0,
w − θc(t) ≥ w − θc(t),
w − θc(t) ≥ w − θc(t).
(θ − θ)(c(t) − c(t)) ≤ 0
t ≤ t
w = θc(t),
w
= θc(t)+θc(t) − θc(t).
π(t − θc(t)) + (1 −π)(t − θc(t) − θc(t)+θc(t)) → max
t,t
.
1 − θc
(t)=0 =⇒ t = t
FB
,
π(1 −
θc
(t)) + (1 − π)(θ − θ)c
(t)=0 =⇒ t<t
FB
.