∀x∃yF(x, y)
F (x)&¬F(x)
F
0
F F
0
(x)&¬F
0
(x)
∃x(F (x)&¬F(x))
∀xF (x) ∨∀xG(x) →∀x(F (x) ∨G (x))
∃x(F (x)&G(x)) →∃xF (x)&∃xG(x))
∃xG(x, x) →∃y∃zG(y, z)
∃xF (x, y )&∃xF (y, x)
∀xF (x, y ) ∨∀xF (y,x)
∃x((F (x) →¬F (x)) & (¬F (x) → F (x)))
∃y∀xF(x, y)&∀x∃y¬F (y, x)
(G(x) → G(y)) & ∃xG(x)&∃x¬G(x)