
Методика Р. И. Медведского, Ф. Г. Аржанова и др.
В основу теории положено уравнение (III.3) без
учета
инерционного чле-
на
и принято, что
ф=ар,
тогда
V
где р = Pg (а + Ьд) — плотность смеси, рассчитанная по истинной газонасы-
щениости,
кг/м
3
; р
3
= (1—Р) р
н
+ ?рг =
т
ч/^ — плотность смеси, рассчитанная
по
расходной газонасыщенности, кг/м
3
; mo=p
H
o-H?«Pro — масса газожидкоетт
ной
смеси, приходящаяся на 1 м
3
дегазированной нефти (приведенной к нор-
мальным условиям р
0
и Го), кг/м
3
; р
н
о (pro) — плотность нефти (газа)
при
нормальных условиях, кг/м
3
; 7?о — газовый фактор, м
3
/м
3
;
ft=(Ro—f)X
Х&г+Ьн
— объемный коэффициент газожидкостной смеси; г — количество
растворенного газа, приходящееся на единицу объема дегазированной нефти
Ра
г
^
при
заданных р и Т, м
3
/м
3
; 6
Г
= ——
•
-у— — объемный коэффициент сво-
бодного газа при давлении р и температуре Т; Ь
в
— объемный коэффициент
нефти;
г — коэффициент сжимаемости газа, 6=(1—a)p
B
<,/b
s
m
0
;
i
dp \ ц
2
0
К
~
dT
)r
P
= l Fr
°
gm
°
S
'
Fr
°
=
t*
2
e
d
86400
~
условное число Фруда, рассчитанное по линейной скорости движения (qn=f)
, к
ъ
68 ••*-
дегазированности нефти; Л =0,11 I —j- = н^~ I —коэффициент ги-
дравлического трения газожидкостного потока, рассчитывается по обобщенной
о
qd
формуле А. Д.
Альтшуля;
Re
H =
—2 — —условное число Рейнольдса,
fH-н
рассчитанное по приведенной скорости жидкости и вязкости нефти; k
3
—
эквивалентная
равномерно зернистая шероховатость.
Величина k
b
в значительной мере зависит от состояния
труб.
Для новых
стальных
труб
£
э
=0,01—0,02
мм. С течением времени численное значение
k
a
возрастает в несколько раз.
Для высокодебитных скважин рекомендуется исходить из соотношения
Арманда (а=0,833). После подстановки выражения для потерь напора на
трение и р в (Ш.54)
С
1155
)
где pi и Pi — давления на концах
трубы
длиною /; / определяется численным
интегрированием правой части приведенного соотношения.
Для наклонных скважин вместо Fro
следует
использовать Fro/cos a
(а
—
угол
между
осью скважины и вертикалью). Под / понимается разность
отметок сечений, где давления р, и рг- Если
угол
наклона по высоте — ве-
личина
переменная (что характерно для реальных условий), то всю глубину
скважины
необходимо разделить на несколько участков и для каждого
участ-
ка
принимать а постоянной.
Если
в
(111.55)
принять а=1 (следовательно, Ь=0), то получится урав-
нение
Поэтмана и Карпентера.
Авторы
считают, что коэффициенты о и & в (III.54) зависят от числа
Фруда смеси
Fr
c
={v-^q)
2
/(2f
2
gd).
Зависимость указанных коэффициентов от числа Fr
0
устанавливают по
результатам обработки промысловых данных (распределение давления по
длине колонны НКТ, свойств нефти и газа).
98