GOCE and Its Use for a High-Resolution Global Gravity Combination Model 241
field model, complete up to at least 360 (in terms of spherical harmonics) with an
improved accuracy and quality will result. Surface data will contribute to d/o 359
as complete normal equations. The use of block-diagonal-techniques is planned if
future surface data sets allow for a higher resolution.
References
Abrikosov O, Jarecki F, Müller J, Petrovic S, Schwintzer P (2004) GOCE-GRAND: Gradiometer
data reduction, combination and processing. GEOTECHNOLOGIEN Statusseminar, GFZ
Potsdam, 5 July 2004 (Poster).
Abrikosov O, Schwintzer P (2004) Recovery of the Earth’s gravity field from GOCE satellite grav-
ity gradiometry: A case study. Proceedings of the Second International GOCE User Workshop
“GOCE, the Geoid and Oceanography”, 8–10 March 2004, ESA-ESRIN, Frascati, Italy, ESA
SP-569.
Catastini G, Cesare S, de Sanctis S, Dumontel M, Parisch M, Sechi G (2007) Predictions of
the GOCE in-flight performances with the end-to-end system simulator. Proceedings of the
3rd International GOCE User Workshop, 6–8 November 2006, Frascati, Italy, ESA SP-627,
pp. 9–16.
CIGAR IV (1996) Study of Advanced Reduction Methods for Spaceborne Gravimetry Data, and
of Data Combination with Geophysical Parameters, Final Report. ESA contract No. 152163 –
ASA study ESTEC/JP/95-4-137/MS/nr.
Biancale R, Balmino G, Lemoine J-M, Marty J-C, Moynot B, Barlier F, Exertier P, Laurain O,
Gegout P, Schwintzer P, et al. (2000) A new global Earth’s gravity field model from satellite
orbit perturbations: GRIM5-S1. Geophys. Res. Lett. 27, 3611–3614.
Förste C, Flechtner F, Schmid R, Stubenvoll R, Rothacher M, Kusche J, Neumayer H, Biancale
R, Lemoine J-M, Barthelmes F, et al. (2008a) EIGEN-GL05C – A new global combined
high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, General
Assembly European Geosciences Union (Vienna, Austria, 2008), Geophysical Research
Abstracts, Vol. 10, Abstract No. EGU2008-A-06944/2008.
Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R,
Lemoine JM, Bruinsma S, et al. (2008b) The GeoForschungsZentrum Potsdam/Groupe de
Recherche de Gèodésie: Spatiale satellite-only and combined gravity field models: EIGEN-
GL04S1 and EIGEN-GL04C. J. Geod. 82, 331–346, doi: 10.1007/s00190-007-0183-8.
Gruber T (2000) Hochauflösende Schwerefeldbestimmung aus Kombination von terrestrischen
Messungen und Satellitendaten über Kugelfunktionen. Scientific Technical Report STR00/16,
GeoForschungsZentrum, Potsdam.
Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM,
Luthcke SB, Torrence MH, et al. (1998) The Development of the Joint NASA GFSC and
NIMA Geopotential Model EGM96. NASA/TP-1998-206861, Goddard Space Flight Center,
Greenbelt, MD.
Migliaccio F, Reguzzoni M, Sanso F (2004) Space-wise approach to satellite gravity field
determination in the presence of coloured noise. J. Geod. 78, 304–313, doi: 10.1007/s00190-
004-0396-z.
Pail R. Schuh W-D, Wermuth M (2005) GOCE gravity field processing. In: Jekeli C, Bastos L,
Fernandez J (eds.), Gravity, Geoid and Space Missions, Springer, Berlin, ISDN 978-3-540-
26930-4, pp. 36–41.
Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2008) An Earth Gravitational Model to Degree
2160: EGM2008. EGU General Assembly 2008. Vienna, Austria, 2008. Geophysical Research
Abstracts, Vol. 10, Abstract No. EGU2008-A-01891/2008.
Petrovic S, Reigber C, Schmidt R, Flechtner F, Wünsch J, Güntner A (2004) Comparing temporal
gravity variations derived from GRACE satellite observations and existing physical models.
Geophysical Research Abstracts, Vol. 6, EGU04-A-06903.