228 J.M. Brockmann et al.
4 Conclusion and Outlook
The presented methods were applied to closed-loop simulations using synthetic
GOCE observations based on the EGM96 (Lemoine et al., 1998), and the latest error
models. Details of the simulation results concerning the modeling and processing of
SST data, implementation and convergence behaviour of PCGMA, variance com-
ponent estimation and filter design can be found in Wermuth (2008), Boxhammer
(2006), Alkhatib (2007), Brockmann and Schuh (2008), and Siemes (2008), respec-
tively. With these developments PCGMA is ready for the processing of the real data,
expected as of mid-2009.
Acknowledgments Parts of this work were financially supported by the BMBF Geotechnologien
program GOCE-GRAND II and the ESA contract No. 18308/04/NL/MM. The computations were
performed on the JUMP supercomputer in Jülich. The computing time was granted by the John
von Neumann Computing Institute (project 1827).
References
Alkhatib H (2007) On Monte Carlo methods with applications to the current satellite gravity mis-
sions. Schriftenreihe des Instituts für Geodäsie und Geoinformation der Universität Bonn No.
7. PhD thesis. http://hss.ulb.uni-bonn.de/diss_online/landw_fak/2007/alkhatib_hamza/
Alkhatib H, Schuh WD (2007) Integration of the Monte Carlo covariance estimation strategy into
tailored solution procedures for large-scaled least squares problems. J. Geod. 70, 53–66.
Boxhammer C (2006) Effiziente numerische Verfahren zur sphärischen harmonischen Analyse
von Satellitendaten. Mitteilungen aus den Geodätischen Instituten der Rheinischen Friedrich-
Wilhelms-Universität Bonn, No. 94. PhD thesis. http://hss.ulb.uni-bonn.de/diss_online/
landw_fak/2006/boxhammer_christian/
Boxhammer C, Schuh WD (2006) GOCE gravity field modeling: Computational aspects – Free
kite numbering scheme. In: Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U,
Flury J (eds.), Observation of the Earth System from Space, Springer, Berlin/Heidelberg.
Bouman J, Rispens S, Gruber T, Koop R, Schrama E, Visser P, Tscherning CC, Veicherts M (2008)
Preprocessing of gravity gradients at the GOCE high-level processing facility. J. Geod., doi:
10.1007/s00190-008-0279-9.
Brockmann JM, Schuh WD (2008) Fast variance component estimation in GOCE data process-
ing. In: Mertikas S (ed.), Gravity, Geoid and Earth Observation, IAG Symposia 135, Springer,
Berlin.
Ditmar P, Kusche J, Klees R (2003) Computation of spherical harmonic coefficients from grav-
ity gradiometry data to be acquired by the GOCE satellite: regularization issues. J. Geod. 77,
465–477.
Drinkwater MR, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M
(2007) The GOCE gravity mission: ESA’s first core Earth explorer. Proceedings of the 3rd
International GOCE User Workshop in Frascati, Italy.
ESA (1999) Gravity field and steady-state ocean circulation mission. Report for Mission Selection
of the Four Candidate Earth Explorer Missions. ESA-Document SP-1233(1).
ESA (2006) GOCE Level 2 Product Data Handbook. ESA-Document GO-TN-HPF-GS-0111.
Gerlach C, Földváry L, Svehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer
H, Peters T, Rothacher M, et al. (2003) A CHAMP-only gravity field model from kinematic
orbits using the energy integral. Geophys. Res. Lett. 30(20), 2037.
Hausleitner W (1995) Orbit and SGG Data Simulations. CIGAR III/Phase 2, Final Report, Part 1.
Hestenes M, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J. Res.
Natl. Bur. Stand. 49(6), 2379.