
9.3 Revolving-Field Theory of Single-Phase Induction Motors 463
depends merely on the hysteresis loop of the rotor material and is independent of
the rate at which the loop is traversed. The motor therefore develops constant torque
right up to synchronous speed, as shown in the idealized torque-speed characteristic
of Fig. 9.10b. This feature is one of the advantages of the hysteresis motor. In con-
trast with a reluctance motor, which must "snap" its load into synchronism from an
induction-motor torque-speed characteristic, a hysteresis motor can synchronize any
load which it can accelerate, no matter how great the inertia. After reaching synchro-
nism, the motor continues to run at synchronous speed and adjusts its torque angle so
as to develop the torque required by the load.
The hysteresis motor is inherently quiet and produces smooth rotation of its load.
Furthermore, the rotor takes on the same number of poles as the stator field. The
motor lends itself to multispeed synchronous operation when the stator is wound with
several sets of windings and utilizes pole-changing connections. The hysteresis motor
can accelerate and synchronize high-inertia loads because its torque is uniform from
standstill to synchronous speed.
9.3 REVOLVING-FIELD THEORY OF
SINGLE-PHASE INDUCTION MOTORS
As discussed in Section 9.1, the stator-mmf wave of a single-phase induction motor
can be shown to be equivalent to two constant-amplitude mmf waves revolving at
synchronous speed in opposite directions. Each of these component stator-mmf waves
induces its own component rotor currents and produces induction-motor action just
as in a balanced polyphase motor. This double-revolving-field concept not only is
useful for qualitative visualization but also can be developed into a quantitative theory
applicable to a wide variety of induction-motor types. We will not discuss the full
quantitative theory here. 1 However, we will consider the simpler, but important case
of a single-phase induction motor running on only its main winding.
Consider conditions with the rotor stationary and only the main stator wind-
ing excited. The motor then is equivalent to a transformer with its secondary short-
circuited. The equivalent circuit is shown in Fig. 9.11 a, where Rl,main and X
1,main
are,
respectively, the resistance and leakage reactance of the main winding,
Xm,main
is the
magnetizing reactance, and
R2,main
and
X2,main are
the standstill values of the rotor
resistance and leakage reactance referred to the main stator winding by use of the
appropriate turns ratio. Core loss, which is omitted here, will be accounted for later
as if it were a rotational loss. The applied voltage is f', and the main-winding current
is
l~main. The voltage
J~main
is the counter emf generated in the main winding by the
stationary pulsating air-gap flux wave produced by the combined action of the stator
and rotor currents.
In accordance with the double-revolving-field concept of Section 9.1, the stator
mmf can be resolved into half-amplitude forward and backward rotating fields. At
1
For an extensive treatment of single-phase motors, see, for example, C. B. Veinott,
Fractional- and
Subfractional-Horsepower Electric Motors,
McGraw-Hill, New York, 1970.