mikos: “9026_c021” — 2007/4/9 — 15:52 — page 15 — #15
Tissue Engineering Applications — Bone 21-15
[3] Marks S.C. and Odgreen P.R. 2002. Structure and development of the skeleton. In J.P. Bilezikian,
L.G. Raisz, and G.A. Rodan (Eds.), Principles of Bone Biology, Vol. 1, pp. 3–14, New York, Academic
Press.
[4] Gay C.V., Donahue H.J., Siedlecki C.A., and Vogler E. 2004. Cellular elements of the skeleton:
osteoblasts, osteocytes, osteoclasts, bone marrow stromal cells. In J.O. Hollinger, T.A. Einhorn,
and B.A. Doll (Eds.), Bone Tissue Engineering, Chapter 3, Boca Raton, FL, CRC Press.
[5] Olsson S.E. and Ekman S. 2002. Morphology and physiology of the growth cartilage under normal
and pathologic conditions. In G.E. Fackelman (Ed.), Bone in Clinical Orthopedics, p. 117, Stuttgart,
Germany, AO Publishing.
[6] Scott, C.K. and Hightower J.A. 1991. The matrix of endochondral bone differs from the matrix of
intramembranous bone. Calcif. Tissue Int. 49: 349–354.
[7] Sandberg M.M. 1991. Matrix in cartilage and bone development: current views on the function
and regulation of the major organic components. Ann. Med. 23: 207–217.
[8] Tuan R.S. 1994. Developmental skeletogenesis. In C.T. Brighton, G. Friedlaender, and J.M. Lane
(Eds.), Bone Formation and Repair, pp. 13, Rosemont, IL, AAOS.
[9] Doll, B.A. 2004. Developmental biology of the skeletal system. In J.O. Hollinger, T.A. Einhorn, and
B.A. Doll (Eds.), Bone Tissue Engineering, Chapter 1, Boca Raton, FL, CRC Press.
[10] Wolff J. 1892. The Law of Bone Remodelling. Translatedby Maquet P. and FurlongR. 1986. NewYork,
NY, Springer-Verlag.
[11] Mikuni-Takagaki Y. 1999. Mechanical responses and signal transduction pathways in stretched
osteocytes. J. Bone Miner. Metab. 17: 57–60.
[12] Dehority W., Halloran B.P., Bikle D.D., Curren T., Kostenuik P.J., Wronski T.J., Shen Y., Rabkin B.,
Bouraoui A., and Morey-Holton E. 1999. Bone and hormonal changes induced by skeletal
unloading in the mature male rat. Am. J. Physiol. 276: E62–E69.
[13] Montufar-Solis D., Duke P.J., and Morey-Holton E. 2001. The Spacelab 3 stimulation: basis for a
model of growth plate response in microgravity in the rat. J. Gravit. Physiol. 8: 67–76.
[14] Cullinane D.M. and Salisbury K.T. 2004. Biomechanics. In J.O. Hollinger, T.A. Einhorn, and
B.A. Doll (Eds.), Bone Tissue Engineering, Chapter 10, Boca Raton, FL, CRC Press.
[15] Ferretti J.L., Capozza R.F., and Zanchetta J.R. 1996. Mechanical validation of a tomographic QCT
index for noninvasive estimation of rat femur bending strength. Bone 18: 97–102.
[16] Beck T.J., Mourtada F.A., Ruff C.B., Scott W.W., and Kao G. 1998. Experimental testing of a
DEXA-derived curved beam model of the proximal femur. J. Orthop. Res. 16: 394–398.
[17] Toyras J., Nieminen M.T., Kroger H., and Jurvelin J.S. 2002. Bone mineral density, ultrasound
velocity, and broadband attention predict mechanical properties of trabecular bone differently.
Bone 31: 503–507.
[18] Stigbrand T. 1984. Present Status and Future Trends of Human Alkaline Phosphatases, pp. 3–14,
New York, NY, Alan R. Liss.
[19] Cole D.E. and Cohen M.M. 1990. Mutations affecting bone forming cells. In B.K. Hall (Ed.), Bone:
The Osteoblast and the Osteocyte, pp. 442–452, New Jersey, The Telford Press.
[20] Risteli L. and Risteli J. 1993. Biochemical markers of bone metabolism. Ann. Med. 25:
385–393.
[21] Butler W.T. 1989. The nature and significance of osteopontin. Connect Tissue Res. 23:
123–136.
[22] Hoang Q.Q., Sicheri F., Howard A.J., and YANG D.S.C. 2003. Bone recognition mechanism of
porcine osteocalcin from crystal structure. Nature 425: 977–980.
[23] Hunter G.K. and Goldberg H.A. 1993. Nucleation of hydroxyapatite by bone sialoprotein. Proc.
Natl Acad. Sci. USA 90: 8562–8565.
[24] Barnes G.L., Kostenuik P.J., Gerstenfeld L.C., and Einhorn T.A. 1999. Growth factor regulation of
fracture repair. J. Bone Miner. Res. 14: 1805–1815.
[25] Learnmoth I.D. 2004. The management of periprosthetic fractures around the femoral stem.
J. Bone Joint Surg. Br. 86: 13–19.