68
ɩɨɦɨɳɶɸ ɩɪɨɝɪɚɦɦɵ SCAD ɜ ɩɪɢɜɟɞɟɧɧɨɣ ɧɢɠɟ ɩɨɫɥɟɞɨɜɚɬɟɥɶɧɨɫɬɢ ɨɩɟɪɚɰɢɣ. ɉɪɢ ɷɬɨɦ
ɩɪɟɞɩɨɥɨɠɢɦ, ɱɬɨ ɪɚɫɱɟɬɧɚɹ ɫɯɟɦɚ ɛɚɥɤɢ ɤɚɤ ɫɢɫɬɟɦɵ ɫ ɨɞɧɨɣ ɫɬɟɩɟɧɶɸ ɫɜɨɛɨɞɵ ɞɥɹ ɟɟ
ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɪɚɫɱɟɬɚ ɨɬ ɡɚɞɚɧɧɨɝɨ ɢɦɩɭɥɶɫɚ ɭɠɟ ɩɨɫɬɪɨɟɧɚ (ɫɦ. ɩɪɢɦɟɪ 4 ɜ ɩɨɞɪɚɡɞɟɥɟ
1.1).
1. ɉɨɫɥɟ ɩɨɥɭɱɟɧɢɹ ɜ ɪɚɡɞɟɥɟ «ɋɯɟɦɚ» ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɆɄɗ ɞɥɹ ɛɚɥɤɢ
(ɫɦ. ɪɢɫ. 1.8, ɚ) ɨɬɤɪɵɜɚɟɦ ɪɚɡɞɟɥ «Ɂɚɝɪɭɠɟɧɢɹ».
2. ȼ ɨɬɤɪɵɜɲɟɣɫɹ ɢɧɫɬɪɭɦɟɧɬɚɥɶɧɨɣ ɩɚɧɟɥɢ ɚɤɬɢɜɢɡɢɪɭɟɦ ɤɧɨɩɤɭ
«Ⱦɢɧɚɦɢɱɟɫɤɢɟ ɜɨɡɞɟɣɫɬɜɢɹ» ɢ ɜ ɨɬɤɪɵɜɲɟɦɫɹ ɞɢɚɥɨɝɨɜɨɦ ɨɤɧɟ ɜɵɛɢɪɚɟɦ «ɋɨɡɞɚɧɢɟ ɧɨɜɨɝɨ
ɡɚɝɪɭɠɟɧɢɹ». ȼ ɪɟɡɭɥɶɬɚɬɟ ɨɬɤɪɵɜɚɟɬɫɹ ɩɟɪɜɚɹ ɫɬɪɚɧɢɰɚ ɞɜɭɯɫɬɪɚɧɢɱɧɨɝɨ ɞɢɚɥɨɝɨɜɨɝɨ ɨɤɧɚ
ɫ ɩɟɪɟɱɢɫɥɟɧɢɟɦ ɪɚɡɥɢɱɧɵɯ ɞɢɧɚɦɢɱɟɫɤɢɯ ɜɨɡɞɟɣɫɬɜɢɣ.
ɉɨɫɤɨɥɶɤɭ ɜ ɩɨɫɬɚɜɥɟɧɧɨɣ ɡɚɞɚɱɟ ɜɪɟɦɹ
T5.0 W ɜɨɡɞɟɣɫɬɜɢɹ ɩɨɫɬɨɹɧɧɨɣ ɫɢɥɵ
5.1
o
P ɬɫ ɧɚ ɛɚɥɤɭ ɫɜɹɡɚɧɨ ɫ ɩɟɪɢɨɞɨɦ
ɫɨɛɫɬɜɟɧɧɵɯ ɤɨɥɟɛɚɧɢɣ ɛɚɥɤɢ ɤɚɤ ɫɢɫɬɟɦɵ ɫ
ɨɞɧɨɣ ɫɬɟɩɟɧɶɸ ɫɜɨɛɨɞɵ, ɫɧɚɱɚɥɚ ɧɚɣɞɟɦ ɷɬɨɬ ɩɟɪɢɨɞ, ɬ. ɟ. ɫɧɚɱɚɥɚ ɜɵɩɨɥɧɢɦ
ɫɨɨɬɜɟɬɫɬɜɭɸɳɢɣ ɞɢɧɚɦɢɱɟɫɤɢɣ ɪɚɫɱɟɬ, ɧɚɡɜɚɧɧɵɣ ɜ ɩɪɨɝɪɚɦɦɟ SCAD ɤɚɤ «Ɇɨɞɚɥɶɧɵɣ
ɚɧɚɥɢɡ». ɗɬɚ ɡɚɞɚɱɚ ɞɥɹ ɡɚɞɚɧɧɨɣ ɛɚɥɤɢ ɛɵɥɚ ɪɟɲɟɧɚ ɜ ɩɪɢɦɟɪɟ 4 ɩɨɞɪɚɡɞɟɥɚ 1.1 ɞɥɹ ɛɚɥɤɢ,
ɤɨɝɞɚ ɧɚ ɧɟɟ ɛɵɥ ɩɨɫɬɚɜɥɟɧ ɷɥɟɤɬɪɨɞɜɢɝɚɬɟɥɶ ɜɟɫɨɦ gmG
ɞɞ
= (1.5 ɬ) ·(9.81 ɦ/ɫ
2
) =
= 14.715 ɤɇ = (14.715 ɤɇ) : (9.81 ɦ/ɫ
2
) = 1.5 ɬɫ. Ɍɚɦ ɛɵɥɚ ɩɨɥɭɱɟɧɚ ɭɝɥɨɜɚɹ ɫɨɛɫɬɜɟɧɧɚɹ
ɱɚɫɬɨɬɚ
08.72 Z ɫ
-1
ɢ ɩɟɪɢɨɞ ZS /2T = 0.087 ɫ.
ɉɪɢ ɨɬɫɭɬɫɬɜɢɢ ɞɜɢɝɚɬɟɥɹ, ɦɚɫɫɚ
2
m ɜɭɡɥɟ 2 ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɵ ɭɦɟɧɶɲɢɬɫɹ ɢ ɛɭɞɟɬ ɪɚɜɧɚ
ɬɨɥɶɤɨ ɦɚɫɫɟ ɛɚɥɤɢ, ɩɪɢɜɟɞɟɧɧɨɣ ɤ ɭɡɥɭ 2, ɚ ɢɦɟɧɧɨ 2.4 ɬ (ɜɦɟɫɬɨ 3.9 ɬ ɩɪɢ ɧɚɥɢɱɢɢ ɜ ɷɬɨɦ
ɠɟ ɭɡɥɟ ɦɚɫɫɵ ɞɜɢɝɚɬɟɥɹ). ɂɡ ɮɨɪɦɭɥɵ (1.14) ɜɢɞɧɨ, ɱɬɨ ɫ ɭɦɟɧɶɲɟɧɢɟɦ ɦɚɫɫɵ ɭɝɥɨɜɚɹ
ɫɨɛɫɬɜɟɧɧɚɹ ɱɚɫɬɨɬɚ
ɫɢɫɬɟɦɵ ɫ ɨɞɧɨɣ ɫɬɟɩɟɧɶɸ ɫɜɨɛɨɞɵ ɭɜɟɥɢɱɢɬɫɹ. Ⱦɟɣɫɬɜɢɬɟɥɶɧɨ, ɜ
ɪɚɫɫɦɚɬɪɢɜɚɟɦɨɣ ɜ ɞɚɧɧɨɦ ɩɪɢɦɟɪɟ ɫɢɫɬɟɦɵ ɫ ɨɞɧɨɣ ɫɬɟɩɟɧɶɸ ɫɜɨɛɨɞɵ ɩɨɥɭɱɢɦ:
88.91 Z
ɫ
-1
ɢ
0.068 ɫ.
Ɍɟɩɟɪɶ ɜ ɪɚɡɞɟɥɟ «Ɂɚɝɪɭɠɟɧɢɹ» ɫɧɨɜɚ ɧɚɠɢɦɚɟɦ ɤɧɨɩɤɭ
ɢ ɫɨɡɞɚɞɢɦ ɧɨɜɨɟ
ɞɢɧɚɦɢɱɟɫɤɨɟ ɡɚɝɪɭɠɟɧɢɟ ɨɬ ɡɚɞɚɧɧɨɝɨ ɢɦɩɭɥɶɫɧɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ ɧɚ ɛɚɥɤɭ (ɬɨɱɧɟɟ ɧɚ ɟɟ
ɪɚɫɱɟɬɧɭɸ ɫɯɟɦɭ ɜ ɜɢɞɟ ɫɢɫɬɟɦɵ ɫ ɨɞɧɨɣ ɫɬɟɩɟɧɶɸ ɫɜɨɛɨɞɵ).
3. ȼɵɛɢɪɚɟɦ ɜɢɞ ɜɨɡɞɟɣɫɬɜɢɹ «ɂɦɩɭɥɶɫ» ɢ ɡɚɞɚɟɦ ɨɬɪɚɠɚɸɳɟɟ ɫɭɬɶ ɪɚɫɱɟɬɚ ɢɦɹ
ɞɢɧɚɦɢɱɟɫɤɨɝɨ ɡɚɝɪɭɠɟɧɢɹ. ȼɵɯɨɞɢɦ ɢɡ ɩɟɪɜɨɣ ɫɬɪɚɧɢɰɵ ɞɢɚɥɨɝɨɜɨɝɨ ɨɤɧɚ ɧɚɠɚɬɢɟɦ ɜ ɟɝɨ
ɜɟɪɯɧɟɣ ɱɚɫɬɢ «ɂɦɩɭɥɶɫɧɵɟ ɢ ɭɞɚɪɧɵɟ ɜɨɡɞɟɣɫɬɜɢɹ
».
4. ɇɚ ɨɬɤɪɵɜɲɟɣɫɹ ɜɬɨɪɨɣ ɫɬɪɚɧɢɰɟ ɞɢɚɥɨɝɨɜɨɝɨ ɨɤɧɚ ɜɜɨɞɢɦ ɱɢɫɥɨ ɭɱɢɬɵɜɚɟɦɵɯ
ɫɨɛɫɬɜɟɧɧɵɯ ɮɨɪɦ ɤɨɥɟɛɚɧɢɣ (ɜ ɩɨɫɬɪɨɟɧɧɨɣ ɪɚɫɱɟɬɧɨɣ ɫɯɟɦɟ ɞɥɹ ɫɢɫɬɟɦɵ ɫ ɨɞɧɨɣ
ɫɬɟɩɟɧɶɸ ɫɜɨɛɨɞɵ ɜɜɨɞɢɦ ɰɢɮɪɭ 1) ɢ ɡɧɚɱɟɧɢɟ
09.0
ɧ
ɤɨɷɮɮɢɰɢɟɧɬɚ ɧɟɭɩɪɭɝɨɝɨ
ɫɨɩɪɨɬɢɜɥɟɧɢɹ ɠɟɥɟɡɨɛɟɬɨɧɧɨɣ ɛɚɥɤɢ. ɇɚɠɚɬɢɟɦ ɤɧɨɩɤɢ «ɈɄ» ɧɚ ɜɬɨɪɨɣ ɫɬɪɚɧɢɰɟ ɜɵɯɨɞɢɦ
ɢɡ ɞɢɚɥɨɝɨɜɨɝɨ ɨɤɧɚ.
5. ɇɚ ɢɧɫɬɪɭɦɟɧɬɚɥɶɧɨɣ ɩɚɧɟɥɢ ɚɤɬɢɜɢɡɢɪɭɟɦ ɤɧɨɩɤɭ
«ɂɧɟɪɰɢɨɧɧɵɟ
ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ» ɢ ɜɵɛɢɪɚɟɦ ɜ ɨɬɤɪɵɜɲɟɦɫɹ ɫɩɢɫɤɟ «ɂɦɩɭɥɶɫɧɨɟ ɜɨɡɞɟɣɫɬɜɢɟ». Ɉɬɤɪɨɟɬɫɹ
ɞɢɚɥɨɝɨɜɨɟ ɨɤɧɨ, ɨɫɧɨɜɧɚɹ ɱɚɫɬɶ ɤɨɬɨɪɨɝɨ ɩɪɢɜɟɞɟɧɚ ɧɢɠɟ.
ȼ ɨɤɧɟ ɜɜɨɞɹɬɫɹ ɭɤɚɡɚɧɧɵɟ ɬɚɦ ɯɚɪɚɤɬɟɪɢɫɬɢɤɢ ɡɚɞɚɧɧɨɝɨ ɢɦɩɭɥɶɫɢɜɧɨɝɨ ɜɨɡɞɟɣɫɬɜɢɹ
ɩɨɫɬɨɹɧɧɨɣ ɫɢɥɨɣ. ȼɵɛɪɚɧɧɵɟ ɟɞɢɧɢɰɵ ɢɡɦɟɪɟɧɢɹ ɜɜɨɞɢɦɵɯ ɜɟɥɢɱɢɧ ɩɪɢ ɨɬɤɪɵɬɢɢ ɩɪɨɟɤɬɚ
ɨɬɪɚɠɟɧɵ ɜ ɨɤɧɟ. Ɏɨɪɦɚ ɜɨɡɞɟɣɫɬɜɢɹ ɩɪɢɧɹɬɚ ɩɪɹɦɨɭɝɨɥɶɧɚɹ; ɧɚɩɪɚɜɥɟɧɢɟ ɜɨɡɞɟɣɫɬɜɢɹ – Z.