314 Handbook of Chemoinformatics Algorithms
61. Caflisch, A., Miranker, A., and Karplus, M., Multiple copy simultaneous search and con-
struction of ligands in binding sites:Application to inhibitors of HIV-1 aspartic proteinase.
J. Med. Chem. 1993, 36(15), 2142–2167.
62. Dong, X., Zhang, Z., Wen, R., Shen, J., Shen, X., and Jiang, H., Structure-based de novo
design, synthesis, and biological evaluation of the indole-based PPARgamma ligands (I).
Bioorg. Med. Chem. Lett. 2006, 16(22), 5913–5916.
63. Schwefel, H. P., Deep insight from simple models of evolution. Biosystems 2002, 64(1–3),
189–198.
64. Pegg, S. C., Haresco, J. J., and Kuntz, I. D., A genetic algorithm for structure-based de
novo design. J. Comput. Aided Mol. Des. 2001, 15(10), 911–933.
65. Lameijer, E.W., Tromp, R.A., Spanjersberg, R. F., Brussee, J., and Ijzerman,A. P., Design-
ing active template molecules by combining computational de novo design and human
chemist’s expertise. J. Med. Chem. 2007, 50(8), 1925–1932.
66. Molecular Evoluator [computer software] CIDRUX Pharminformatics: Haarlem, The
Netherlands. www.cidrux.com
67. Douguet, D., Munier-Lehmann, H., Labesse, G., and Pochet, S., LEA3D: A computer-
aided ligand design for structure-based drug design. J. Med. Chem. 2005, 48(7),
2457–2468.
68. Schneider, G. and Fechner, U., Computer-based de novo design of drug-like molecules.
Nat. Rev. Drug Discov. 2005, 4(8), 649–663.
69. Mauser, H. and Guba, W., Recent developments in de novo design and scaffold hopping.
Curr. Opin. Drug Discov. Devel. 2008, 11(3), 365–374.
70. Voronkov, A. E., Baskin, I. I., Palyulin, V. A., and Zefirov, N. S., Molecular modeling of
modified peptides, potent inhibitors of the xWNT8 and hWNT8 proteins. J. Mol. Graph.
Model. 2008, 26(7), 1179–1187.
71. Nishibata, Y. and Itai, A., Confirmation of usefulness of a structure construction program
based on three-dimensional receptor structure for rational lead generation. J. Med. Chem.
1993, 36(20), 2921–2928.
72. Iwata, Y., Naito, S., Itai, A., and Miyamoto, S., Protein structure-based de novo
design and synthesis of aldose reductase inhibitors. Drug Des. Discov. 2001, 17(4),
349–510.
73. Heikkila, T., Thirumalairajan, S., Davies, M., Parsons, M. R., McConkey, A. G.,
Fishwick, C. W., and Johnson, A. P., The first de novo designed inhibitors of Plasmod-
ium falciparum dihydroorotate dehydrogenase. Bioorg. Med. Chem. Lett. 2006, 16(1),
88–92.
74. Ali, M. A., Bhogal, N., Findlay, J. B., and Fishwick, C. W., The first de novo-designed
antagonists of the human NK(2) receptor. J. Med. Chem. 2005, 48(18), 5655–5658.
75. Ji, H., Zhang, W., Zhang, M., Kudo, M., Aoyama, Y., Yoshida, Y., Sheng, C., et
al., Structure-based de novo design, synthesis, and biological evaluation of non-azole
inhibitors specific for lanosterol 14alpha-demethylase of fungi. J. Med. Chem. 2003, 46(4),
474–485.
76. Grembecka, J., Sokalski, W. A., and Kafarski, P., Computer-aided design and activity pre-
diction of leucine aminopeptidase inhibitors. J. Comput. Aided. Mol. Des. 2000, 14(6),
531–544.
77. Grembecka, J., Mucha,A., Cierpicki, T., and Kafarski, P., The most potent organophospho-
rus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity.
J. Med. Chem. 2003, 46(13), 2641–2655.
78. Alig, L., Alsenz, J., Andjelkovic, M., Bendels, S., Benardeau, A., Bleicher, K., Bourson,
A., et al., Benzodioxoles: Novel cannabinoid-1 receptor inverse agonists for the treatment
of obesity. J. Med. Chem. 2008, 51(7), 2115–2127.