3
Note: also known as a blast oven.
4
http://www.armycorrosion.com/past_summits/summit2009/09Presentations%5CDay3%5CMoshe
Moked.pdf
5
For instance, see: http://papers.sae.org/2006-01-2851/
6
For example, see: http://www.ipmd.net/shop/Powder_Metallurgy_Permanent_Magnets_and_their_
Applications
7
Canadian nickels were once made from strips rolled from pure nickel powder, but are now fabricated
from steel (3.5% Cu) and contain only about 2% Ni, applied as an electrolytic coating.
8
Hohmann, C.; Tipton Jr., B.; Dutton, M. Propellant for the NASA Standard Initiator October 2000
(NASA/TP-2000-210186). May be downloaded for free at http://ston.jsc.nasa.gov/collections/TRS/
_techrep/TP-2000-210186.pdf
9
Note: these cutoff values for steels are arbitrary. Iron at the lower end of this range is referred to either
mild steel, or low-carbon steel.
10
Note: a good reference for “crystal field theory” is Cotton, F. A.; Wilkinson, G.; Gaus, P. L. Basic
Inorganic Chemistry, 3rd ed., Wiley: New York, 1994.
11
(a) Olson, G. B.; Cohen, M. Metallurg. Mater. Trans. A 1976, 7, 1897. (b) http://hal.archives-ouvertes.
fr/docs/00/25/56/55/PDF/ajp-jp4199707C558.pdf
12
(a) http://www.whiting-equip.com/media/praxairs%20argon%20oxygen%20decarburization.pdf
(b) http://www.cfd.com.au/cfd_conf03/papers/063Tan.pdf
13
Kohler, J.; Whangbo, M -H. Chem. Mater. 2008, 20, 2751, and references therein.
14
Kohler, J.; Deng, S.; Lee, C.; Whangbo, M. -H. Inorg. Chem. 2007, 46, 1957, and references therein.
15
For a discussion regarding the bandgap of half-Heusler alloys, see: Kohler, J.; Deng, S. Inorg. Chem.
2007, 46, 1957, and references therein.
16
Cumberland, R. W.; Weinberger, M. B.; Gilman, J. J.; Clark, S. M.; Tolbert, S. H.; Kaner, R. B. J. Am.
Chem. Soc. 2005, 127, 7264.
17
Gu, Q.; Krauss, G.; Steurer, W. Adv. Mater. 2008, 20, 3620.
18
http://web.archive.org/web/20030605085042/http://www.sma-inc.com/SMAPaper.html
19
For instance, see: (a) Fe-Mn-Si-Cr-Ni-Sm: Shakoor, R. A.; Khalid, F. A. Mater. Sci. Eng. A 2009, 499,
411. (b) Fe-Mn-Si-Ni-Co: Wang, X. -X.; Zhang, C. -Y. J. Mater. Sci. Lett. 1998, 17, 1795. (c) Cu-Zn-
Al: Lin, G. M.; Lai, J. K. L.; Chung, C. Y. Scripta Metallurgica Mater. 1995, 32, 1865. (d) Cu-Zn-Al-
Mn: Gil, F. J.; Guilemany, J. M.; Sanchiz, I. J. Mater. Sci. 1993, 28, 1542.
20
For other biomedical applications for shape-memory alloys, see: (a) Lendlein, A.; Langer, R. Science
2002, 296, 1673. (b) El Feninat, F.; Laroche, G.; Fiset, M.; Mantovani, D. Adv. Engin. Mater. 2002, 4,
91. (c) http://www.scielo.br/pdf/bjmbr/v36n6/4720.pdf
21
Liang, W.; Zhou, M.; Ke, F. Nano Lett. 2005, 5, 2039.
22
For example, see: (a) Xu, J.; Liu, W. Wear 2006, 260, 486. (b) Mergia, K.; Liedtke, V.; Speliotis, T.;
Apostolopoulos, G.; Messoloras, S. Adv. Mater. Res. 2009, 59, 87. (c) Benea, L.; Bonora, P. L.;
Borello, A.; Martelli, S. Wear 2001, 249, 995.
23
Park, H.; Kim, K. Y.; Choi, W. J. Phys. Chem. B 2002, 106, 4775.
24
Note: think of the atom in the middle of the bcc unit cell – at lattice position (1/2, 1/2, 1/2). Since there
are no atoms on the unit cell faces in a bcc array, there are no atoms that lie directly along the x , y, and z
axes emanating from this central atom.
25
The DoE 2015 targets may be found online at: http://www.hydrogen.energy.gov/pdfs/review06/
st_0_overview_satyapal.pdf
26
For instance, see: (a) Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128,
3494. (b) Latroche, M.; Surble
´
, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang,
J. S.; Jhung, S. H., Fe
´
rey, G. Angew. Chem., Int. Ed. 2006, 45, 8227. (c) Chahine, R.; Benard, P. In
Advances in cryogenic engineering Kittel, P., Ed.; Plenum Press: New, York, 1998. (d) Kabbour, H.;
Baumann, T. F.; Satcher, J. H., Jr., Saulnier, A.; Ahn, C. C. Chem. Mater. 2006, 18, 6085.
27
Liu, Y.; Kabbour, H.; Brown, C. M.; Neumann, D. A.; Ahn, C. C. Langmuir 2008, 24, 4772.
28
Schlapbach, L.; Zuttel, A. Nature, 2001, 414, 353.
29
Filinchuk, Y.; Chernyshov, D.; Nevidomskyy, A.; Dmitriev, V. Angew. Chem. Int. Ed. Eng. 2008, 47,
529.
234 3 Metals