Local Solvability of Free Boundary Problems 669
If the initial data u
0
∈ (L
q
(Ω),W
2
q
(Ω))
1−1/p,p
= B
2(1−1/p)
q,p
(Ω) satisfies the
compatibility condition (1.9), then by Theorem 5.1 we know that the problem
(5.3) admits a unique solution
u
2
∈ W
2,1
q,p
(Ω × (0, 2)),π
2
∈ L
p
((0, 2),
ˆ
W
1
q
(Ω)).
Moreover there exists ¯π
2
∈ H
1,1/2
q,p
(Ω × (0, 2)) such that [[¯π]] = [[ π
2
]] . ( u
2
, π
2
,¯π
2
)
satisfies the estimate
u
2
W
2,1
q,p
(Ω×(0,2))
+ π
2
L
p
((0,2),
ˆ
W
1
q
(Ω))
+ ¯π
2
H
1,1/2
q,p
(Ω×(0,2))
≤ C
2
u
0
+ u
1
B
2(1−1/p)
q,p
(Ω))
. (5.7)
If we set z = u
1
+ u
2
and τ = π
1
+ π
2
,then(z, τ) satisfies the time-dependent
linear equation in the time interval (0, 2):
ρ∂
t
z − Div S(z, τ)=0 inΩ× (0, 2),
div z =0 inΩ× (0, 2),
[[ S(z,τ)ν]] = ( σH
0
(Γ) + [[ρ]] c
g
ξ
n
)ν on Γ × (0, 2),
[[ z]] = 0 o n Γ × (0, 2),
z|
t=0
= u
0
in Ω. (5.8)
z is our initial flow.
Now, we look for a solution (u, π) of the equation (4.13) of the form: u = z+w
and π = τ + κ in the time interval (0,T)with0<T≤ 1. Setting ¯τ = π
1
+¯π
2
,we
see that w, κ and η should satisfy the equations:
ρ∂
t
w − Div S(w, κ)=DivQ(z + w)+R(z + w)∇(τ + κ)inΩ× (0,T),
div w = E(z + w)=div
˜
E(z + w)inΩ× (0,T),
∂
t
η − ν ·w = G(z + w)+ν · z on Γ × (0,T),
[[ ΠμD(w)ν]] = [[ H
t
(z + w)]] on Γ × (0,T),
[[ ν · S(w, κ)ν]] + σ(m −Δ
Γ
)η =[[H
n
(z + w, ¯τ + κ)]] on Γ × (0,T),
[[ w]] = 0 o n Γ × (0,T),
w|
t=0
=0inΩ,η|
t=0
=0onΓ. (5.9)
6. The nonlinear problem
In this section we solve (5.9), namely we shall prove the following theorem.
Theorem 6.1. Let 2 <p<∞ and n<q<∞.Let(u
1
,π
1
) be a solution of
(5.1) and (u
2
,π
2
,η
2
) be a solution of (5.3). Then there exists T>0 depending on
u
0
B
2(1−1/p)
q,p
(Ω)
and α
W
3−1/q
q
(R
n−1
)
such that (5.9) admits a unique solution
w ∈ W
2,1
q,p
(Ω × (0,T))
n
,κ∈ L
p
((0,T),
ˆ
W
1
q
(Ω)),
η ∈ W
1
p
((0,T),W
2−1/q
q
(Γ)) ∩ L
p
((0,T),W
3−1/q
q
(Γ)).