Preface xi
[13] H. Amann, E. Zehnder. Nontrivial solutions for a class of nonresonance problems
and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa
Cl.Sci.(4)7 (1980), no. 4, 539–603.
[14] H. Amann. Parabolic evolution equations and nonlinear boundary conditions. J. Dif-
ferential Equations 72 (1988), no. 2, 201–269.
[15] H. Amann. Existence and regularity for semilinear parabolic evolution equations.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), no. 4, 593–676.
[16] H. Amann. Parabolic evolution equations in interpolation and extrapolation spaces.
J. Funct. Anal. 78 (1988), no. 2, 233–270.
[17] H. Amann. Dynamic theory of quasilinear parabolic equations. I. Abstract evolution
equations. Nonlinear Anal. 12 (1988), no. 9, 895–919.
[18] H. Amann. Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion
systems. Differential Integral Equations 3 (1990), no. 1, 13–75.
[19] H. Amann. Dynamic theory of quasilinear parabolic systems. III. Global existence.
Math. Z. 202 (1989), no. 2, 219–250.
[20] H. Amann. Nonhomogeneous linear and quasilinear elliptic and parabolic bound-
ary value problems. Function spaces, differential operators and nonlinear analysis
(Friedrichroda, 1992), 9–126, Teubner-Texte Math., 133, Teubner, Stuttgart, 1993.
[21] H. Amann. Coagulation-fragmentation processes. Arch. Ration. Mech. Anal. 151
(2000), no. 4, 339–366.
[22] H. Amann. Operator-valued Fourier multipliers, vector-valued Besov spaces, and ap-
plications. Math. Nachr. 186 (1997), 5–56.
[23] H. Amann. Compact embeddings of vector-valued Sobolev and Besov spaces. Dedicated
to the memory of Branko Najman. Glas. Mat. Ser. III 35 (55) (2000), no. 1, 161–177.
[24] H. Amann. Elliptic operators with infinite-dimensional state spaces. J. Evol. Equ. 1
(2001), no. 2, 143–188.
[25] H. Amann. Multiplication in Sobolev and Besov spaces. Nonlinear analysis, 27–50,
Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991.
[26] H. Amann. On the strong solvability of the Navier-Stokes equations. J. Math. Fluid
Mech. 2 (2000), no. 1, 16–98.
[27] H. Amann. Stability of the rest state of a viscous incompressible fluid. Arch. Rational
Mech. Anal. 126 (1994), no. 3, 231–242.
[28] H. Amann. Time-delayed Perona-Malik type problems. Acta Math. Univ. Comenian.
(N.S.) 76 (2007), no. 1, 15–38.
[29] H. Amann. Maximal regularity and quasilinear parabolic boundary value problems.
Recent advances in elliptic and parabolic problems, 1–17, World Sci. Publ., Hacken-
sack, NJ, 2005.
[30] H. Amann. Ordinary differential equations. An introduction to nonlinear analysis.
Translated from the German by Gerhard Metzen. de Gruyter Studies in Mathemat-
ics, 13. Walter de Gruyter & Co., Berlin, 1990. xii+438 pp.
[31] H. Amann. Linear and quasilinear parabolic problems. Vol. I. Abstract linear the-
ory. Monographs in Mathematics, 89. Birkh¨auser Boston, Inc., Boston, MA, 1995.
xxxvi+335 pp.