576 J. Pr¨uss and M. Wilke
[10] M. Kubo, A. Ito, and N. Kenmochi. Well-posedness and attractors of phase transition
models with constraint. In Proceedings of the Third World Congress of Nonlinear
Analysts, Part 5(Catania, 2000), volume 47, pages 3207–3214, 2001.
[11] Ph. Lauren¸cot. Solutions to a Penrose-Fife model of phase-field type. J. Math. Anal.
Appl., 185(2):262–274, 1994.
[12] G.M. Lieberman. Second order parabolic differential equations. World Scientific Pub-
lishing Co. Inc., River Edge, NJ, 1996.
[13] J. Pr¨uss and M. Wilke. Maximal L
p
-regularity and long-time behaviour of the non-
isothermal Cahn-Hilliard equation with dynamic boundary conditions. Oper. Theory
Adv. Appl., 168:209–236, 2006.
[14] E. Rocca and G. Schimperna. The conserved Penrose-Fife system with Fourier heat
flux law. Nonlinear Anal., 53(7-8):1089–1100, 2003.
[15] Th. Runst and W. Sickel. Sobolev spaces of fractional order, Nemytskij operators, and
nonlinear partial differential equations, volume 3 of de Gruyter Series in Nonlinear
Analysis and Applications. Walter de Gruyter & Co., Berlin, 1996.
[16] G. Schimperna. Global and exponential attractors for the Penrose-Fife system. Math.
Models Methods Appl. Sci., 19(6):969–991, 2009.
[17] W. Shen and S. Zheng. Maximal attractors for the phase-field equations of Penrose-
Fife type. Appl. Math. Lett., 15(8):1019–1023, 2002.
[18] J. Sprekels and S. Zheng. Global smooth solutions to a thermodynamically consis-
tent model of phase-field type in higher space dimensions. J. Math. Anal. Appl.,
176(1):200–223, 1993.
[19] R. Zacher. Quasilinear parabolic problems with nonlinear boundary conditions.PhD
thesis, Martin-Luther-Universit¨at Halle-Wittenberg, 2003.
http://sundoc.bibliothek.uni-halle.de/diss-online/03/03H058/prom.pdf.
[20] S. Zheng. Global existence for a thermodynamically consistent model of phase field
type. Differential Integral Equations, 5(2):241–253, 1992.
Jan Pr¨uss and Mathias Wilke
Institut f¨ur Mathematik
Martin-Luther-Universit¨at Halle-Wittenberg
Theodor-Lieser-Str. 5
D-06120 Halle, Germany
e-mail: jan.pruess@mathematik.uni-halle.de
mathias.wilke@mathematik.uni-halle.de (Corresponding author)