Two-phase Navier-Stokes Equations 539
[7] J.T. Beale, Large-time regularity of viscous surface waves. Arch. Rational Mech.
Anal. 84, (1983/84), 304–352.
[8] J.T. Beale, T. Nishida, Large-time behavior of viscous surface waves. Recent topics
in nonlinear PDE, II (Sendai, 1984), 1–14, North-Holland Math. Stud., 128, North-
Holland, Amsterdam, 1985.
[9] D. Bothe, J. Pr
¨
uss, G. Simonett, Well-posedness of a two-phase flow with soluble
surfactant. Nonlinear elliptic and parabolic problems, Progress Nonlinear Differential
Equations Appl., 64,Birkh¨auser, Basel, 2005, 37–61.
[10] D. Bothe, J. Pr
¨
uss, L
p
-Theory for a class of non-Newtonian fluids. SIAM J. Math.
Anal. 39 (2007), 379–421.
[11] I.V. Denisova, A priori estimates for the solution of the linear nonstationary prob-
lem connected with the motion of a drop in a liquid medium. (Russian) Trudy Mat.
Inst. Steklov 188 (1990), 3–21. Translated in Proc. Steklov Inst. Math. 1991, no. 3,
1–24.
[12] I.V. Denisova , Problem of the motion of two viscous incompressible fluids sepa-
rated by a closed free interface. Mathematical problems for Navier-Stokes equations
(Centro, 1993). Acta Appl. Math. 37 (1994), 31–40.
[13] I.V. Denisova, V.A. Solonnikov, Classical solvability of the problem of the motion
of two viscous incompressible fluids. (Russian) Algebra i Analiz 7 (1995), no. 5, 101–
142. Translation in St. Petersburg Math. J. 7 (1996), no. 5, 755–786.
[14] R. Denk, M. Hieber, J. Pr
¨
uss, R-boundedness, Fourier multipliers, and problems
of elliptic and parabolic type. AMS Memoirs 788, Providence, R.I. (2003).
[15] R. Denk, G. Dore, M. Hieber, J. Pr
¨
uss, A. Venni, Some new thoughts on old
results of R.T. Seeley. Math. Annalen 328 (2004) 545–583.
[16] G. Dore, A. Venni, On the closedness of the sum of two closed operators. Math.
Z. 196 (1987), no. 2, 189–201.
[17] J. Escher, G. Simonett, Analyticity of the interface in a free boundary problem.
Math. Ann. 305 (1996), no. 3, 439–459.
[18] J. Escher, G. Simonett, Analyticity of solutions to fully nonlinear parabolic evo-
lution equations on symmetric spaces. Dedicated to Philippe B´enilan. J. Evol. Equ.
3 (2003), no. 4, 549–576.
[19] J. Escher, J. Pr
¨
uss, G. Simonett, Analytic solutions for a Stefan problem with
Gibbs-Thomson correction. J. Reine Angew. Math. 563 (2003), 1–52.
[20] J. Escher, J. Pr
¨
uss, G. Simonett, A new approach to the regularity of solutions
for parabolic equations. Evolution equations, 167–190, Lecture Notes in Pure and
Appl. Math., 234, Dekker, New York, 2003.
[21] G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equa-
tions. Vol. I. Linearized steady problems. Springer Tracts in Natural Philosophy, 38.
Springer-Verlag, New York, 1994.
[22] N. Kalton, L. Weis,TheH
∞
-calculus and sums of closed operators. Math. Ann.
321 (2001), 319–345.
[23] P.C. Kunstmann, L. Weis, Maximal L
p
-regularity for parabolic equations, Fourier
multiplier theorems and H
∞
-functional calculus. Functional analytic methods for
evolution equations, 65–311, Lecture Notes in Math., 1855, Springer, Berlin, 2004.