552 J. Pr¨uss and M. Wilke
Proposition 3.1. Let n ∈ N and p>(n +2)/2, p ≥ 2, b ∈ C
2−
(0, ∞), b
(s) > 0
for all s>0, λ, Φ ∈ C
4−
(R) and ϑ
0
(x) > 0 for all x ∈
¯
Ω. Then there exists a
constant C>0, independent of T , and functions μ
j
= μ
j
(T ) with μ
j
(T ) → 0 as
T → 0, such that for all (u, v), (¯u, ¯v) ∈ B
R
(u
∗
,v
∗
) the following statements hold.
1. |ΔG
1
(u, v) − ΔG
1
(¯u, ¯v)|
X(T )
≤ (μ
1
(T )+R)|(u, v) − (¯u, ¯v)|
E
1
(T )
,
2. |G
2
(u, v) − G
2
(¯u, ¯v)|
X(T )
≤ C(μ
2
(T )+R)|(u, v) − (¯u, ¯v)|
E
1
(T )
,
3. |∂
ν
G
1
(u, v) − ∂
ν
G
1
(¯u, ¯v)|
Y
1
(T )
≤ C(μ
3
(T )+R)|(u, v) − (¯u, ¯v)|
E
1
(T )
.
The proof is given in the Appendix.
It is now easy to verify the self-mapping property of T .Let(u, v) ∈ B
R
.By
Proposition 3.1 there exists a function μ = μ(T )withμ(T ) → 0asT → 0such
that
|T (u, v)|
1
= |L
−1
G((u
∗
,v
∗
), (u, v))|
1
≤|L
−1
||G((u
∗
,v
∗
), (u, v))|
0
≤ C(|G((u
∗
,v
∗
), (u, v)) − G((u
∗
,v
∗
), (0, 0))|
0
+ |G((u
∗
,v
∗
), (0, 0))|
0
)
≤ C(|ΔG
1
(u + u
∗
,v+ v
∗
) −ΔG
1
(u
∗
,v
∗
)|
X(T )
+ |G
2
(u + u
∗
,v+ v
∗
) −G
2
(u
∗
,v
∗
)|
X(T )
+ |∂
ν
G
1
(u + u
∗
,v+ v
∗
) −∂
ν
G
1
(u
∗
,v
∗
)|
Y
1
(T )
+ |G((u
∗
,v
∗
), (0, 0))|
0
)
≤ C(μ(T )+R)|(u, v)|
1
+ |G((u
∗
,v
∗
), (0, 0))|
0
≤ C(μ(T )+R)R + |G((u
∗
,v
∗
), (0, 0))|
0
.
HenceweseethatT B
R
⊂ B
R
if T and R are sufficiently small, since
G((u
∗
,v
∗
), (0, 0)) is a fixed function. Furthermore for all (u, v), (¯u, ¯v) ∈ B
R
we
have
|T (u, v) −T(¯u, ¯v)|
1
= |L
−1
(G((u
∗
,v
∗
), (u, v)) − G((u
∗
,v
∗
), (¯u, ¯v)))|
1
≤|L
−1
||G((u
∗
,v
∗
), (u, v)) − G((u
∗
,v
∗
), (¯u, ¯v))|
0
≤ C(|ΔG
1
(u + u
∗
,v+ v
∗
) −ΔG
1
(¯u + u
∗
, ¯v + v
∗
)|
X(T )
+ |∂
ν
G
1
(u + u
∗
,v+ v
∗
) − ∂
ν
G
1
(¯u + u
∗
, ¯v + v
∗
)|
Y
1
(T )
+ |G
2
(u + u
∗
,v+ v
∗
) − G
2
(¯u + u
∗
, ¯v + v
∗
)|
X(T )
)
≤ C(μ(T )+R)|(u, v) − (¯u, ¯v)|
1
.
Thus T is a strict contraction on B
R
,ifT and R are again small enough. Therefore
we may apply the contraction mapping principle to obtain a unique fixed point
(˜u, ˜v) ∈ B
R
of T . In other words the pair (ψ, ϑ)=(˜u + u
∗
, ˜v + v
∗
) ∈ E
1
(T )isthe
unique local solution of (1.2). We summarize the preceding calculations in
Theorem 3.2. Let n ∈ N, p>(n +2)/2, p ≥ 2, p =3, 5, b ∈ C
3−
(0, ∞), b
(s) > 0
for all s>0 and let λ, Φ ∈ C
4−
(R). Then there exists an interval J =[0,T] ⊂
[0,T
0
]=J
0
and a unique solution (ψ, ϑ) of (1.2) on J,with
ψ ∈ H
1
p
(J; L
p
(Ω)) ∩ L
p
(J; H
4
p
(Ω))